EXAIR’s Adjustable Spot Cooler: A Versatile Tool for Your Cooling Needs!


If you’re looking at replacing messy coolant mist systems, look no further than the Adjustable Spot Cooler. EXAIR’s Adjustable Spot Cooler incorporates Vortex Tube technology to produce temperatures ranging from -30°F – +70°F. A Vortex Tube works by imparting a rapid spinning motion to the supplied compressed air. This airflow makes its way to the end of the tube where it is forced to abruptly change directions. It is during this change of direction that energy is given off in the form of heat. The hot air then exits the tube from the hot end, while cold air exits the other end of the tube. As the valve is opened to allow more air to exhaust from the hot end, the temperature at the cold end will decrease. At a sound level of just 73 dBA when operated at 100 psig and stock generator installed, this compact cooler will keep your operation cool, clean and dry without causing unnecessarily high noise levels.


Critical tolerances are maintained on plastic parts using the Adjustable Spot Cooler


When looking at a Vortex Tube based solution, the variety of options can sometimes be daunting. This is where the versatility of the Adjustable Spot Cooler shines. Through a simple turn of the control knob, you can easily adjust the temperature and cold fraction of the unit. Additionally, the kits come with (2) extra generators (15-H and 30-H) that can be swapped out for the stock generator for more/less cooling power and air consumption. The 15-H generator will deliver up to 1,000 Btu/hr of cooling capacity and the 30-H will provide up to 2,000 Btu/hr of cooling capacity. We have (2) different kits available, the Model 3825 Single Point and the Model 3925 Dual Point Kit. The 3825 is recommended for use in applications where you’re cooling a small surface such as solder joints, hot melts, or drilled plastics. The 3925 system is better served when heat is generated over a larger surface area such as saw blade cooling. The kits use flexible Loc-Line hose to allow you to precisely position the cold airflow onto your target. The Adjustable Spot Cooler provides easy mounting with a swivel magnetic base, allowing you to mount the cooler directly at the most critical point that heat is being generated.

3825_3925 adj spot cooler

If you’re tired of cleaning up your coolant or have an application that requires dry machining, get one of the Adjustable Spot Cooler systems on order today. They’re in stock ready to ship!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Estimating the Cost of Compressed Air Systems Leaks

Leaks in a compressed air system can waste thousands of dollars of electricity per year. In fact, in many plants, the leakage can account for up to 30% of the total operational cost of the compressor. Some of the most common areas where you might find a leak would be at connection joints like valves, unions, couplings, fittings, etc. This not only wastes energy but it can also cause the compressed air system to lose pressure which reduces the end use product’s performance, like an air operated actuator being unable to close a valve, for instance.

One way to estimate how much leakage a system has is to turn off all of the point-of-use devices / pneumatic tools, then start the compressor and record the average time it takes for the compressor to cycle on and off. The total percentage of leakage can be calculated as follows:

Percentage = [(T x 100) / (T + t)]

T = on time in minutes
t = off time in minutes

The percentage of compressor capacity that is lost should be under 10% for a system that is properly maintained.

Another method to calculate the amount of leakage in a system is by using a downstream pressure gauge from a receiver tank. You would need to know the total volume in the system at this point though to accurately estimate the leakage. As the compressor starts to cycle on,  you want to allow the system to reach the nominal operating pressure for the process and record the length of time it takes for the pressure to drop to a lower level. As stated above, any leakage more than 10% shows that improvements could be made in the system.


(V x (P1 – P2) / T x 14.7) x 1.25

V= Volumetric Flow (CFM)
P1 = Operating Pressure (PSIG)
P2 =  Lower Pressure (PSIG)
T = Time (minutes)
14.7 = Atmospheric Pressure
1.25 = correction factor to figure the amount of leakage as the pressure drops in the system

Now that we’ve covered how to estimate the amount of leakage there might be in a system, we can now look at the cost of a leak. For this example, we will consider a leak point to be the equivalent to a 1/16″ diameter hole.

A 1/16″ diameter hole is going to flow close to 3.8 SCFM @ 80 PSIG supply pressure. An industrial sized air compressor uses about 1 horsepower of energy to make roughly 4 SCFM of compressed air. Many plants know their actual energy costs but if not, a reasonable average to use is $0.25/1,000 SCF generated.

Calculation :

3.8 SCFM (consumed) x 60 minutes x $ 0.25 divided by 1,000 SCF

= $ 0.06 per hour
= $ 0.48 per 8 hour work shift
= $ 2.40 per 5-day work week
= $ 124.80 per year (based on 52 weeks)

As you can see, that’s a lot of money and energy being lost to just one small leak. More than likely, this wouldn’t be the only leak in the system so it wouldn’t take long for the cost to quickly add up for several leaks of this size.

If you’d like to discuss how EXAIR products can help identify and locate costly leaks in your compressed air system, please contact one of our application engineers at 800-903-9247.

Justin Nicholl
Application Engineer






Air Amplifiers – What is an Amplification Ratio?

On Friday my colleague, Russ, blogged about the Super Air Amplifier (see that BLOG here, including a video demo)  In discussing the Air Amplifiers, the topic of amplification was mentioned. Today, I’d like to expand a bit further the amplification aspect of the Air Amplifier performance.

As the name of the device implies, the compressed air used by the Air Amplifier is added to, and thus ‘amplified’, the total output flow of the unit. Depending on the size and type of Air Amplifier, the amplification ratio starts at 12:1 and goes up to 25:1, with the ratio being the output flow to the compressed air usage.


Super Air Amplifier and Adjustable Air Amplifier

EXAIR offers (2) types- the Super Air Amplifier and the Adjustable Air Amplifier.  The Super Air Amplifier uses a patented shim technology to maintain a precise gap, which controls the compressed air flow and expansion through the unit.  As the expanded air flows along the Coanda profile, a low pressure area is created at the center which induces a high volume flow of surrounding air into the primary air-stream.  The combined flow of primary and surrounding air exhausts from the Air Amplifier in a high volume, high velocity flow.  The larger diameter units have a greater cross sectional area with larger low pressure areas, resulting in greater amplification ratios.

The Below table shows the amplification ratios.


The Adjustable Air Amplifier does not use a shim, but rather has an infinitely adjustable gap, allowing for fine adjustment of performance.  Force and flow is changed by turning the exhaust end to adjust the gap, and is then locked into place. The method of the amplification is the same as for the Super Air Amplifier, and the amplification ratios are similar and shown below.


The Super Air Amplifiers and Adjustable Air Amplifiers are ideal for use in applications and processes that require cooling, drying and/or cleaning of parts, or the ventilation of confined areas or weld smoke or the exhausting of tank fumes.

If you have questions regarding the Air Amplifier, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

The Cost of Compressed Air Leaks Create the Need to Find and Fix

Leaks can cost you

As margins get tighter and cost of manufacturing climbs, industries are looking into other areas to be more economical.  A big focus today is in the compressed air systems.  Compressed air is considered to be the “forth” utility behind gas, water, and electricity.  It is a necessary system to run pneumatic systems, but it is the least efficient of the utilities.  For every $1.00 that is put into making compressed air, you only get roughly 5¢ of work from it.  So, it is very important to use this utility as efficiently as possible.

One of the largest problems affecting compressed air systems is leaks.  That quiet little hissing sound coming from the pipe lines is costing the company much money.  A university study was conducted to find the percentage of air leaks in a typical manufacturing plant.  In a poorly maintained system, they found on average that 30% of the compressor capacity is lost through air leaks.  In relation to the amount of electricity required to make compressed air, for every ten power plants producing electricity, there is one power plant producing electricity just for air leaks.  A majority of companies do not have a leak prevention program; so, many of these companies have poorly maintained systems. This creates a large amount of waste caused by simple air leaks.  To put a dollar value on it, a leak that you cannot physically hear can cost you as much as $130/year.  That is just for one inaudible leak in hundreds of feet of compressed air lines.  For the leaks that you can hear, you can tell by the chart below the amount of money that can be wasted by the size of the hole.  Unlike a hydraulic system, compressed air will not leave a tell-tale sign of a leak. You have to locate them by some other means.

**Note 1

Most leaks occur where you have threaded fittings, connections, hoses, and pneumatic components like valves, regulators, and drains.  The Optimization products from EXAIR are designed to help optimize your complete compressed air system.  The most effective way is to find and eliminate air leaks, and EXAIR has two products that can help do this.  The Ultrasonic Leak Detectors can find the air leaks, and the Digital Flowmeters can monitor your system for air leaks.  With both of these products included in a leak prevention program, you will be able to keep your compressed air system running optimally and reduce the wasted cost in air leaks and overusing the air compressor.

EXAIR Ultrasonic Leak Detector:

When a leak occurs, it emits an ultrasonic noise caused by turbulence.  These ultrasonic noises can be at a frequency above that which is audible for human hearing.  The EXAIR Ultrasonic Leak Detector can pick up these frequencies and make the leaks audible.  With three sensitivity ranges and LED display, you can find very minute leaks in your compressed air system.  It comes with two attachments; the parabola to locate leaks up to 20 feet away, and the tube attachment to define the exact location in the pipe line.  Once you find a leak, it can be marked for fixing.

EXAIR’s Digital Flowmeter w/ USB Data Logger

EXAIR Digital Flowmeter:

With the Digital Flowmeters, you can continuously monitor for waste.  Air leaks can occur at any time within any section of your pneumatic area.  You can do systematic checks by isolating sections with the Digital Flowmeter and watching for a flow reading.  Another way to monitor your system would be to compare the results over time.  With the Digital Flowmeters, we have a couple of options for recording the air flow data.  We have the USB Datalogger for setting certain time increments to record the air flows.  Once the information is recorded, you can connect the USB to your computer, and with the downloadable software, you can view the information and export it into an Excel spread sheet.  We also offer a wireless capability option with the Digital Flowmeters.  You can have multiple flow meters communicating through a gateway to monitor and record the flow information onto your computer system.  If you find that the flow starts trending upward for the same process, then you know that you have a leak.  It can also give you a preventive measure if your pneumatic system is starting to fail.

Compressed air leaks will rob you in performance, compressor life, and electrical cost.  It is important to have a leak prevention program to check for leaks periodically as they can happen at any time.  The EXAIR Ultrasonic Leak Detector and the Digital Flowmeters will help you accomplish this and optimize your compressed air system.  Once you find and fix all your leaks, you can then focus on improving the efficiency of your blow-off devices with EXAIR products and save yourself even more money.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb


**Note 1: Chart was published by Compressed Air Challenge in April 1998 – Rev. 0

Video Blog: The Monetary Benefits of an Engineered Solution

This video highlights the value and benefits of an engineered blow off solution.  We take a homemade open pipe blowoff and replace it with an EXAIR model 1100 Super Air Nozzle.  This air nozzle is then controlled through our Electronic Flow Controller, allowing for intermittent On/Off of the compressed air flow.  And, these solutions are wirelessly monitored via Zigbee network using our Wireless Digital Flowmeter.  Implementing these solutions results in a compressed air reduction of over 90%!!!


Full calculations along with supporting flow values (pulled from the same data shown in the video above) are shown below.

Screengrab of the flow values shown in the video above. Click for larger image.

The open pipe:

The first compressed air flow values to show up on the EXAIR Logger are for the open pipe blow off.  At 1 BAR operating pressure, this “solution” consumes 22.3 SCFM of compressed air.  At a cost of $0.25 for every 1,000 cubic feet of compressed air, this nozzle will cost $695.76 to operate 8 hours per day, 5 days per week, 52 weeks per year.

The engineered EXAIR Super Air Nozzle

Model 1100 EXAIR Super Air Nozzles consumes 4.7 SCFM at an operating pressure of 1 BAR – a reduction of 79% compared to the open pipe.  These savings prove out in terms of operating cost as well – $146.64 per year, compared to $695.76.

The engineered EXAIR Super Air Nozzle with Electronic Flow Control (EFC)

By controlling the “ON” time for this application with an EFC, we are only blowing for 32% of the time for each minute of operation which changes the required compressed air flow from 4.7 SCFM to a peak value of 1.5 SCFM. This control saves an additional 68% of compressed air flow.  And, these savings are compounded by eliminating the need for constant compressed air flow.  Total annual operating cost for the EXAIR 1100 Super Air Nozzle with Electronic Flow Control is just $46.80.

Implementing an engineered solution can have a TREMENDOUS impact on energy costs and operating costs in your facility.  Compressed air is the most expensive utility to produce and consume, making the impact of proper solutions of high value to any business.  Let us help you utilize engineered compressed air solutions in your facility by contacting an EXAIR Application Engineer today.

Lee Evans
Application Engineer

What’s So “Super” About The Super Air Amplifier?

EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of free air from the surrounding environment.

“Free air” from the surrounding environment?  You might think it’s too good to be true, and if you think you’re getting something for nothing, you’re right.  If you consider, though, that it’s oftentimes preferable to work smarter, not harder, then the use of engineered compressed air products is too good NOT to be true.  Case in point: the Super Air Amplifier.

The Coanda Effect is the “work smarter, not harder” part of the Super Air Amplifier

Simple and low cost, (hey, “engineered” doesn’t necessarily mean “complex and expensive”) the EXAIR Super Air Amplifier uses a small amount of compressed air to generate a tremendous amount of air flow through entrainment.  How much do they pull in?  Depending on the model, they entrain air at rates of 12:1 (for the 3/4″ Model 120020) to 25:1 (4″ & 8″ Models 120024 & 120028, respectively.)  The larger diameters mean there’s more cross sectional area to entrain air, so there is indeed efficiency to scale, size-wise.  There are a couple of great visuals in this video, if you want to see the entrainment in action (1:50) or the difference that the entrainment makes (1:30):


Where can you use a Super Air Amplifier?  The easy answer is, anyplace you want a consistent, reliable air flow.  The pressure supply can be regulated from a “blast to a breeze,” depending on the needs of your application.  The patented shim can be replaced for even higher performance, while maintaining the efficiency that makes it so valuable.  The balanced flow makes for incredibly quiet operation…no more noisy fans, blowers, or open-end compressed air pipes.  The body (3/4″ to 4″ sizes) is cast with a 2-hole flange for ease of installation.

When can you use a Super Air Amplifier?  Another easy answer: anytime you want.  If you need a continuous air flow, there are no moving parts to wear or electrical components to burn out.  Supply them clean, dry air, and they’ll run darn near indefinitely, maintenance free.

Alternately, if you need intermittent air flow, starting & stopping operation is as simple as opening & closing a valve in the compressed air supply line.  They produce rated flow immediately, and cut it off just as fast.

Some of the more popular applications are ventilation/exhaust, cooling, drying, cleaning, and dust collection.  There are five distinct models to choose from, and they’re all in stock.  We’re also happy to discuss special requirements that might lead to a custom product too.  Our Application Engineers work with Design & Production all the time to meet specific needs of particular situations.

If you’d like to find out more about letting the Super Air Amplifier, or any of EXAIR’s Intelligent Compressed Air Products work smarter for you, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Proper Supply Line Size And Fittings Provide Peak Performance

Many times when we provide the air consumption of an EXAIR product, we get a response like…. “I’ve got plenty of pressure, we run at around 100 PSIG”. While having the correct pressure available is important, it doesn’t make up for the volume requirement or SCFM (Standard Cubic Feet per Minute) needed to maintain that pressure. We commonly reference trying to supply water to a fire hose with a garden hose, it is the same principle, in regards to compressed air.

When looking to maintain an efficient compressed air system, it’s important that you use properly sized supply lines and fittings to  support the air demand (SCFM) of the point-of-use device. The smaller the ID and the longer the length of run, it becomes more difficult for the air to travel through the system. Undersized supply lines or piping can sometimes be the biggest culprit in a compressed air system as they can lead to severe pressure drops or the loss of pressure from the compressor to the end use product.

Take for example our 18″ Super Air Knife. A 18″ Super Air Knife will consume 52.2 SCFM at 80 PSIG. We recommend using 1/2″ Schedule 40 pipe up to 10′ or 3/4″ pipe up to 50′. The reason you need to increase the pipe size after 10′ of run is that 1/2″ pipe can flow close to 100 SCFM up to 10′ but for a 50′ length it can only flow 42 SCFM. On the other hand, 3/4″ pipe is able to flow 100 SCFM up to 50′ so this will allow you to carry the volume needed to the inlet of the knife, without losing pressure through the line.

Pipe size chart for the Super Air Knife

We also explain how performance can be negatively affected by improper plumbing in the following short video:


Another problem area is using restrictive fittings, like quick disconnects. While this may be useful with common everyday pneumatic tools, like an impact wrench or nail gun, they can severely limit the volumetric flow to a device requiring more air , like a longer length air knife.

1/4″ Quick Connect

For example, looking at the above 1/4″ quick disconnect, the ID of the fitting is much smaller than the NPT connection size. In this case, it is measuring close to .192″. If you were using a device like our Super Air Knife that features 1/4″ FNPT inlets, even though you are providing the correct thread size, the small inside diameter of the quick disconnect causes too much of a restriction for the volume (SCFM) required to properly support the knife, resulting in a pressure drop through the line, reducing the overall performance.

If you have any questions about compressed air applications or supply lines, please contact one of our application engineers for assistance.

Justin Nicholl
Application Engineer

%d bloggers like this: