Save Thousands of Dollars – Just Like You Did When Upgrading Your Light Bulbs

lightbulb-1875247_1920

The cheapest and easiest solution isn’t always necessarily the best. The best example I like to use to highlight this is the incandescent light bulb. They’re definitely the cheapest to buy, but over the useful life it will cost more in electricity to operate and it won’t last nearly as long as an LED light bulb. When you compare the costs of electricity as well as the lifespan of an incandescent bulb, it becomes quite clear that the initial price difference between the two will be quickly recouped over the lifetime of the LED bulb. Once it pays for itself, it doesn’t just stop saving you electricity. These savings continue to compound.

The same can be said when comparing the Super Air Knife to a commonly seen homemade alternative, drilled pipe. While it only takes a matter of minutes to drill a few holes into a section of pipe, the operating costs (electricity required to generate the compressed air) are significantly higher than that of the Super Air Knife. In addition, it’s not nearly as effective and is considered unsafe under OSHA 29 CFR 1910.242 (b) and depending on operating pressure is likely also considered dangerous due to the high sound levels as outlined in OSHA 29 CFR 1910.95(a).

Air exiting out of drilled holes in a pipe will create a turbulent airstream. This turbulence not only contributes to the high sound level but it’s ability to entrain surrounding ambient air is minuscule. The air entrainment ratio of a compressed air solution refers to the relationship between supplied compressed air and the free ambient air that is brought into the primary airstream. The higher the amplification ratio, the less compressed air necessary to complete a similar task. For a drilled pipe, the amplification ratio is generally around 3:1. With the Super Air Knife, this is dramatically increased with an amplification ratio of 40:1.

SAK vs drilled pipe

The Super Air Knife has a precisely set air gap across the full length of the knife, allowing for an efficient and quiet laminar airstream. When compared to a drilled pipe, the air consumption is dramatically reduced as is the sound level. For example, let’s take an 18” section of drilled pipe, with 1/16” diameter holes spaced out every ½”. At 80 PSIG, each hole consumes 3.8 SCFM. With a total of 37 holes, this equates to a total of 140.6 SCFM.

3.8 SCFM x 37 = 140.6 SCFM

A Super Air Knife, operated at 80 PSIG with .002” stock shim installed will consume a total of 2.9 SCFM per inch of knife. An 18” SAK would then consume just 52.2 SCFM.

2.9 SCFM x 18 = 52.2 SCFM

140.6 SCFM – 52.2 SCFM = 88.4 SCFM saved 

Replacing an 18” drilled pipe with a Super Air Knife represents a total reduction in compressed air consumption of 63%! How much does this equate to in $$$? A reasonable average of cost to generate compressed air is about $0.25/ 1000 SCF. Let’s assume just a 40hr workweek:

88.4 SCFM x 60 mins x $0.25/1000 SCF = $1.33/hr

$1.33 x 40hr workweek = $53.20 USD

$53.20 x 52 weeks/year = $2,766.40 USD in yearly savings

The 2019 list price on a Model 110018 Super Air Knife is $397.00. By replacing the homemade solution with an 18” Super Air Knife, the return on investment is just over 38 working days of an 8-hr shift. If your plant runs multiple shifts, or works on weekends, it pays for itself even quicker.

 

exairsak_colormedia_600x

Once the knife has paid for itself, it doesn’t just simply stop saving you money. That savings continues to compound and add to your bottom line. Don’t waste unnecessary air (and money) by using solutions that aren’t engineered to do the job in a safe and efficient manner. Reach out to an Application Engineer and get yourself an Intelligent Compressed Air Product that’s Built to Last.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Light bulb photo courtesy of Pixabay.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s