Super Air Amplifier Increases Airflow In Vaccum Hood For Fume Extraction

A couple days ago I  took a call from an extrusion company who was looking to increase the airflow in their plating operation. They manufacture several different shapes and styles of aluminum extrusions by the way of 8 large extrusion presses. On one of the presses they make a specialty line of products that are sent to a finishing operation to be anodized.

Above the anodizing process tanks they use a vacuum hood to capture fumes and send them to a scrubber system so the air can be cleaned before being exhausted. They were starting to see an increase in the level of VOC (Volatile Organic Compound) gases in the area and, after some internal testing, determined the existing system wasn’t moving enough air through the system for the gases to be adequately delivered to the scrubber tank.

Example of a scrubber system

After further discussion, the customer ordered our Model # 120022 2″ Super Air Amplifier to test under our Unconditional 30 Day Guarantee.  Air Amplifiers are one of the most efficient products in the EXAIR catalog. Using a patented internal shim, they use a small amount of compressed air that passes through an internal chamber where it is exhausted through a thin gap at high velocity. This directed airflow creates a lower pressure at the intake side which draws in a large amount of free air. The 2 combining air flows result in a large volume of “amplified”, high velocity exhausting airflow, making them ideal for increased air movement.

Air Amplifiers entrain enormous amounts of “free” air, at ratios of up to 25:1!

If you have an application where you need to increase airflow or if you’re looking to vent or exhaust noxious fumes, an Air Amplifier is the ideal choice. For help selecting the best Model or to discuss a particular process, please contact an application engineer for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

Pueblo Chemical Agent-Destruction Pilot Plant Agent Processing Building courtesy of PEO ACWA via creative common license.

 

Intelligent Solutions for Electrical Enclosure Cooling Educational Webinar

Warmer temperatures are quickly approaching, which may seem like a welcome change for personal reasons, but in a processing line, the increased temperatures can wreak havoc on sensitive components found in an electrical control panel.

EXAIR Corporation will be hosting a FREE webinar titled “Intelligent Solutions for Electrical Enclosure Cooling” on May 23, 2018 at 2:00 PM EDT.

(click on the photo to register – it’s FREE!)

By attending this interactive session, you will learn the difference between the 3 most common NEMA ratings for electrical control panels found in an industrial setting, NEMA Type 12, 4 and 4X. We’ll provide examples of traditional, yet unreliable, methods of cooling and the concerns associated with using these types of devices.

Next we will explain how ignoring heat related issues can cause machines to shut down due to failed electrical components, resulting in lost production and increased maintenance costs, negatively affecting a company’s bottom line.

In closing, we’ll show how using an engineered, compressed air operated solution can reduce  downtime by providing a low cost, maintenance-free way to cool and purge control panels with no moving parts.

CLICK HERE TO REGISTER

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Lower Operating Costs by Minimizing Compressed Air Leaks

Almost every industry uses compressed air in some capacity. It is often referred to as the “fourth utility” In an industrial setting, next to water, gas and electric. and in many cases, is the largest energy user in the plant. With an average cost of $ 0.25 per every 1000 Standard Cubic Feet used, compressed air can be expensive to produce so it is very important to use this utility as efficiently as possible. When evaluating the performance of a compressed air system, it’s important to look at the system as a whole.

When you operate point-of-use devices at a higher pressure than necessary to perform a certain job or function, you are creating “artificial demand”. This results in excess air volume being consumed, increasing the amount of energy being lost to waste. For example, plant personnel or operators increase the supply pressure in an effort to improve the end use devices performance. When there is a leak in the system, the line pressure will actually begin to drop and performance begins to deteriorate in other areas in the plant. This not only puts stress on the existing compressor but it also leads to the false idea that a larger or secondary compressor is needed.

Here’s a quick reference on how operating pressure can directly affect operating cost:


Our Model # 1101 Super Air Nozzle requires 14 SCFM @ 80 PSIG. Based on the average operating cost of $ 0.25 per 1000 SCF used, it would cost $ 0.21 per hour to operate this nozzle. (14 SCFM x $ 0.25 x 60 minutes / 1000 SCF = $ 0.21)

If you were able to use the same Model # 1101 Super Air Nozzle operating at only 40 PSIG, while still achieving the desired end result, the air demand would decrease to only 8.1 SCFM, reducing the hourly cost to $ 0.12.  (8.1 SCFM x $ 0.25 x 60 minute / 1000 SCF = $ 0.12)

Don’t waste your money

Leaks in a compressed air system can account for up to 30% of the total operational cost of the compressor, wasting thousands of dollars of electricity per year. Some of the more common places for a leak to occur would be at connection points such as valves, unions, couplings, fittings, etc.

In this table, you will see that a certain amount of air volume is lost through an orifice or opening. If you have several leaks throughout your facility, it isn’t gong to take long for the waste and high operating costs to quickly add up as well as potential increases in repair or maintenance costs for the existing compressor. The industry average shows that any leakage more than 10%, shows there are areas where operational improvements could be made in a compressed air system.

Stay tuned to our blog over the next few weeks as we will discuss how following a few simple steps can help optimize your current compressed air system, in many cases, reducing energy costs related to compressed air waste, leading to a more economical operation.

In the meantime, if you have any questions or would like to discuss a particular application or EXAIR product, give me a call at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

 

 

 

Replacing a 1/4″ Open Copper Tube With a 2″ Flat Super Air Nozzle Leads To Quick ROI

The generation of compressed air accounts for approximately 1/3 of all energy costs in an industrial facility and up to 30% of that compressed air is wasted through inefficient operation. Open pipes or homemade blowoffs waste a ton of compressed air, resulting in high operating costs. By replacing these devices with an energy efficient, engineered solution, you can reduce this waste and dramatically cut energy costs.

For example, let’s look at the average operating costs for a single 1/4″ open copper tube. (If you don’t know you current energy costs, a reasonable average to use is $ 0.25 per every 1,000 SCF used, based on $ 0.08/kWh.

1/4″ Copper tube

A single 1/4″ open copper tube consumes 33 SCFM @ 80 PSIG and costs roughly $ 0.50 per hour to operate. (33 SCF x 60 minutes x $ 0.25 / 1,000 = $ 0.50). For an 8 hour shift, the total cost would be $ 4.00 ($ 0.50 x 8 hours = $ 4.00).

If we were to replace the 1/4″ open copper tube with our Model # 1122 2″ Flat Super Air Nozzle with 1/4″ FNPT inlet, the air consumption would be reduced to 21.8 SCFM @ 80 PSIG. This may not seem like much of an air usage reduction, but when you look at the monetary, total cost of ownership for purchasing and operating the nozzle, the savings can quickly add up.

2″ Flat Super Air Nozzle

The operating cost for a 2″ Flat Super Air Nozzle with 1/4″ FNPT inlet is $ 0.33 per hour (21.8 SCF x 60 minutes x $ 0.25 / 1,000 = $ .033) or $ 2.64 per 8 hour shift ($ 0.33 x 8 hours = $ 2.64).

We can now compare the operational cost between the 2 devices:

1/4″ open copper tube operating costs:
$ 0.50 per hour
$ 4.00 per day (8 hours)

2″ Flat Super Air Nozzle operating costs:
$ 0.33 per hour
$ 2.64 per day (8 hours)

Cost Savings:
$ 4.00 / day (open copper tube) –  $ 2.64 / day (2″ Flat Super Air Nozzle) = $ 1.36 savings per day

The Model # 1122 2″ Flat Super Air Nozzle has a list price $ 67.00 USD.

ROI or Return On Investment calculation:
$ 67.00 (Cost) / $ 1.36 (savings per day) = 49.26 days.

The 2″ Flat Super Air Nozzle would pay for itself in just over 49 days in operation. This is the savings for replacing just ONE 1/4″ open copper tube with an engineered solution! In most industrial plants, there could be several of these which presents even more opportunities to reduce the overall operational costs.

Our focus here at EXAIR is to improve the overall efficiency of industrial compressed air operating processes and point of use compressed air operated products. If you are looking to reduce compressed air usage in your facility, contact an application engineer and let us help you optimize your current system.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN