Video blog : VariBlast Compact Safety Air Gun

The following short video is a brief overview of our VariBlast Compact Safety Air Gun. The VariBlast Compact Safety Air Gun’s unique design features a variable flow trigger allowing you to achieve varying levels of force from the same nozzle.

If you have any questions, please  contact an application engineer at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

EXAIR Super Air Knife: Overview

 

Loud and inefficient homemade blowoff

Drilled pipes, like the one shown above, are all too common in industrial settings for processes where a wide surface area needs to be treated. Their popularity can be attributed to how cheap and easy they are to make but in actuality they are very expensive to operate, as they waste large amounts of compressed air, and are very dangerous to operate.

We frequently take calls from customers looking for a more energy efficient, safer solution to replace these types of blowoffs. EXAIR manufactures 3 different styles of Air Knife – the Super, Standard and Full-Flow – that are the ideal solution for wide coverage applications. Today, I would like to provide an overview of our award wining Super Air Knife.

The Super Air Knife

The Super Air Knife is our most efficient air knife in regards to compressed air usage, using only 2.9 SCFM per inch of knife length @ 80 PSIG. It is also the quietest on the market today at only 69 decibels. The Super Air Knife provides the highest air velocity of the 3 styles offered by EXAIR and produces 2.5 ounces of force per inch at 80 PSIG operating pressure. We offer stock lengths from 3” up to 108” in single piece construction with available materials of aluminum, 303ss and 316ss. We also offer PVDF (Polyvinylidene Fluoride) up to 54” for harsh environments.

The Super Air Knife provides a laminar airflow across the entire length with hard-hitting force. They also give a 40:1 amplification rate meaning they entrain 40 parts of the surrounding room air for every 1 part of compressed air used, producing a large volume outlet flow.

Coupling Kit for the Super Air Knives

For applications requiring an air knife length longer than 108″, we offer a coupling bracket kit that allows you to connect two Super Air Knives together for a seamless, uninterrupted flow. Kits are available in aluminum, 303ss or 316ss to match the construction of the knife.

In addition, we also offer plumbing kits as an accessory item. For aluminum Super Air Knives, we offer cut to length nitrile/PVC hose and brass fittings and for stainless steel and PVDF knives we offer 316ss cut-t0-length pipe and fittings.

If you have any questions on how the Super Air Knife might fit into your process, please contact an Application Engineer.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Vacuum Generator System Selection – EXAIR E-Vacs

E-Vac Vacuum Generators are a highly efficient, versatile compressed air vacuum pump. Their versatility allows them to be adapted to many applications such as pick and place, clamping or vacuum forming. They’ve also been used in more unique applications like wood veneer pressing and basketball deflation.

EXAIR manufactures (3) types of E-Vacs – Low vacuum generators for porous materials, like cardboard, generating up to 21″ Hg with vacuum flows as high as 18.5 SCFM. Our high vacuum generators, designed for use with non-porous materials like glass or steel sheets, produce vacuum levels up to 27″ Hg and up to 15.8 SCFM of vacuum flow. The adjustable generators provide flexible vacuum performance, up to 25″ Hg and 81 SCFM,  which can be easily adapted to meet the application.

EXAIR E-Vacs provide instantaneous vacuum response, and are engineered for high efficiency to minimize air consumption.

 

When making a selection, there are a few key areas you want to consider:

Is the material porous or non-porous?

  • This will allow you to select the proper type of vacuum generator to fit the application and the type of vacuum cup best suited for the process.

 

What is the weight of the part and how will it be lifted?

  • If the part is being lifted where the vacuum cups will be positioned horizontally, like on top of a sheet of glass, you want to use a safety factor of 2 times the actual weight of the part. In processes requiring the cups be positioned vertically on the part, such as picking up a sheet of plywood and hanging it on an overhead conveyor, a safety factor of 4 would be used.

 

How many Vacuum Cups do I need?

  • Consider the quantity and placement to evenly distribute the weight for safely moving the material.
  • Depending on the maximum vacuum the generator produce, how much weight can each cup lift?
  • Make the cup selection per the following chart

 

Once you have selected the type and number of cups needed, you can then begin to look at which additional accessories items you might need.

  • Filters – supplying clean, dry air is key for maintaining optimal performance. An automatic drain filter  can be used to remove any water or contaminants in the supply line. If there is oil present, consider using an Oil Removal Filter.
  • Mufflers – help to reduce the noise level without restricting the airflow. We offer 2 different styles – Standard and Straight Through. Standards mufflers are a good choice where the supply air is clean and dry. These mufflers can only be used with the porous and non-porous generators. The Straight Through mufflers reduces sound levels by up to 26 dBA and are the better choice in processes where dirt or particulate may be present.
  • Tubing and Fittings – polyurethane tubing is available in 10′ sections up to 50′ for processes requiring the vacuum cups be placed in a location that wouldn’t allow for direct mounting to the NPT vacuum port on the generator or where multiple cups are needed. You want to keep the length of tubing as short as possible though for effective pickup and release time.
  • Check Valve – will maintain vacuum on the load if the supply pressure were to drop or be lost during operation.

For additional assistance selecting the proper E-Vac and accessories for your process, please contact an application engineer at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

No Drip Internal Mix Deflected Fan and 360° Hollow Circular Pattern Atomizing Nozzles

EXAIR offers a wide variety of  Atomizing Spray Nozzles that can be used to coat, rinse or cool a surface. We manufacture (3) different types – Internal Mix, External Mix, and Siphon Fed – as well as 3 different sizes – 1/8″ NPT, 1/4″ NPT and 1/2″ NPT – all in 303ss construction, rated up to 400°F.

Today, I would like to focus on 2 specific Atomizing Nozzles – our No Drip Internal Mix Deflected Fan Nozzle and our Internal Mix 360° Hollow Circular Pattern Nozzle.

Model AD2010SS – No Drip Internal Mix Deflected Flat Fan Atomizing Nozzle, 6.9 GPH, 1/4″ NPT

The No Drip Internal Mix Deflected Fan Atomizing Nozzle produces a flat fan of atomized liquid at a right angle to the nozzle’s orientation and is designed for use in pressured fed applications where the liquid doesn’t need to be controlled independently from the pressurized air. This nozzle is the perfect choice in processes where mounting space is limited like spraying solvent on conveyed parts inside a small chamber or coating the inside of an enclosure. The patented No Drip feature positively stops the liquid flow when the supply air pressure drops below 30 PSIG, eliminating the need for any additional valves or supply lines.  This is especially beneficial in applications using expensive fluids or where drips can ruin a finished product. This nozzle is available with 1/4″ NPT inlets and flows as high as 6.9 gallons per hour.

 

Internal Mix 360° Hollow Circular Pattern – designed to spray evenly, away from the nozzle in all directions.

Our Internal Mix 360° Hollow Circular Pattern Atomizing Nozzles produce a circular spray pattern, the ideal solution when trying to coat the inside of ductwork or where a broad mist of atomized liquid is necessary, like dust suppression or humidification. Available in 1/4″ NPT with flows as high as 14.7 GPH and spray diameters up to 53″ in diameter  depending on air and liquid supply pressures. With the 1/2″ NPT, we can achieve up to 150 GPH with a spray diameter up to 156″. Our  standard Atomizing Nozzles also feature an adjustment valve to provide control of the flow rate, making them easy to adapt to a specific requirement.

If you have an application requiring a fine mist of atomized liquid, please contact one of our application engineers and let us know how we can help in making the best product selection to fit your need.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

FREE EXAIR Webinar – November 2nd, 2017 @ 2:00 PM EDT

On November 2, 2017 at 2 PM EDT, EXAIR Corporation will be hosting a FREE webinar titled “Optimizing Your Compressed Air System In 6 Simple Steps”.

During this short presentation, we will explain the average cost of compressed air and why it’s important to evaluate the current system. Compressed air can be expensive to produce and in many cases the compressor is the largest energy user in a plant, accounting for up to 1/3 of the total energy operating costs. In industrial settings, compressed air is often referred to as a “fourth utility” next to water, gas and electric.

Next we will show how artificial demand, through operating pressure and leaks, can account for roughly 30% of the air being lost in a system, negatively affecting a company’s bottom line. We will provide examples on how to estimate the amount of leakage in a system and ways to track the demand from point-of-use devices, to help identify areas where improvements can be made.

To close, we will demonstrate how following six simple steps can save you money by reducing compressed air use, increasing safety and making your process more efficient.

CLICK HERE TO REGISTER

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Machining Plastics? Consider The Cold Gun For A Clean Operation

Machining plastics can be a difficult task as the contact between the part and the tool generates heat, which can result in the plastics beginning to melt and stick to the tooling, causing deformities or even broken tool heads. Often times, companies will introduce a liquid based method of cooling to quench the parts during machining, while this does work, with plastics they tend to absorb some of the liquid, resulting in the finished part being outside the allowable tolerance range. Another area of concern is the mess that liquid cooling creates as now the parts need to be dried and cleaned before they can continue to the next process.

Coolant based systems can be messy and costly to operate

Such was the case last week when I worked with an OEM who was looking for a way to cool the tooling in the machines they build for the plastics industry. The company they were selling the machines to, specifically asked for an alternative method of cooling without using any type of coolant due to the conditions mentioned above. Once again, EXAIR has the perfect solution – the Cold Gun. Incorporating a Vortex Tube, the Cold Gun produces a cold air stream at 50°F below compressed air supply temperature and provides 1,000 Btu/hr. of cooling capacity. Fitted with a magnetic base and flexible hose the unit can be mounted virtually anywhere on the machine and the cold airflow can be easily directed to provide cooling to the critical area. The system also includes a filter separator for the supply line to remove any water or contaminants, ensuring that the exiting airflow is clean and free of debris.

No moving parts = maintenance free

 

When looking for a reliable method of cooling, whether machining plastics or other material, the cold, clean air from the Cold Gun is the ideal solution in place of messy misting systems. For help with your spot cooling needs or to discuss how using Vortex Tube technology could help in your process, give me a call, I’d be happy to help.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

Coolant Spraying in the Mini Mill image courtesy of Andy Malmin via Creative Commons license

2.5″ Line Vac Used In Plastic Part Recovery

I recently worked with an OEM who designed an injection molding machine for their customer. In their design, after the polypropylene parts are formed, they pass through a punch process which creates a scrap piece roughly 1-3/4″ in diameter and 6mm thick but it is very light in weight. The end user was looking for a way to recover these parts in an effort to reduce the amount of waste material in the process but needed an automated solution so they didn’t have to dedicate an operator to manually recover the parts and dump them in the recycle bin. The recovery bin is located close to 25 feet away on the other side of the machining area.

After further discussion,  I recommended they incorporate our Model # 6085 2-1/2″ aluminum Line Vac into their design. The 2.5″ Line Vac has a 2.25″ inside throat diameter which could easily pass the parts and convey them to the collection hopper.

Line Vacs connect to standard ID hose or pipe to create a powerful in-line conveyor

With the recovery bin being located outside of the processing area, they were going to have to run the discharge piping up and over the machines so they were needing something flexible to do so. In addition to the Line Vac, I suggested they use a 30′ section of our 2.5″ conveyance hose. Our conveyance hose is constructed of a durable, clear reinforced PVC, ideal for most general applications and we offer it in 10′ lengths up to 50′, in diameters of 3/8″ to 3″ ID.

Flexible clear PVC hose with smooth bore eliminates material build up.

 

When it comes to moving dry material, like small plastic parts or more abrasive materials like steel shot blasting media, the Line Vacs are the perfect, maintenance-free solution as they have no moving parts or motors to wear out. For help selecting the best option to fit your needs or to discuss how another product might be suitable for your application, give us a call.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN