EXAIR Around the World

I would like to share a conversation with a company that I visited in Singapore.  They manufactured natural rubber material, and they were having issues with material sticking inside the oven.  In our conversation, they would have to stop the process in order to clean the area near the chopping blades where the rubber material would collect.  The system would have to be shut down for the entire day to clean the oven which lost profit and production yields.

I was familiar with this company because they are global.  I remembered that I helped their American counterpart with the exact same application.  I was able to make a quick recommendation for the same product; two model 110260SSPKI Stainless Steel Super Air Knives.  They purchased and installed the Super Air Knives to generate an air curtain to keep the rubber material from sticking to the wall and forcing it into the grinder below.  This helped them to save a lot of money for unscheduled shutdowns.  If the U.S.A. company was able to share this information, it would have been a great cost savings for the corporation as a whole.

Since the establishment of EXAIR in 1983, customer satisfaction has always been the cornerstone of our business model.   And with that business model, our business continues to grow each year.  Now EXAIR is recognized as a brand of excellence.  We shaped this culture by having great customer service and high-quality products that are safe, effective, and very efficient.  With thousands of products in stock, we are able to ship with over a 99.9% on-time delivery.  As a company, EXAIR offers free expert technical advice and share solutions to pneumatic issues through EXAIR Blogs, Videos, application library, and social media.

In today’s market, many companies are global and have plants and facilities throughout the world.  If details like cost savings, safety, increased productivity, problem solving, and energy efficiency would be shared; it would be very beneficial for everyone.  It can help to grow profits, protect employees, improve throughput and save energy which will help to protect the environment.  Since EXAIR is a leader in these areas with compressed air products, we can help you and your affiliates with pneumatic solutions.

EXAIR sells direct in the U.S.A and Canada, and we have over 50 distributors located throughout the rest of the world.  EXAIR has structured our world-wide presence by country in our International Map located on our website.  It is simple to use.  To find a distributor, click on this link, International.  Fill in your Name, Email, and Country.  We also ask if you would like to receive news about EXAIR products in the future.  You can select “Yes” or “No”.  If you would like to obtain information monthly from EXAIR about new products, special notices, or featured products, then click “Yes”.  And, if we do not have a distributor in your area, EXAIR has an International Department that can assist you directly.

Just like the customer above, if the U.S. manufacturer was able to share the information with their sister company in Singapore, it would have saved them a great deal of grief.  To be more effective and efficient as a global company, there should be communication between associates.  If you or your affiliates use compressed air to cool, dry, clean, convey, vacuum, or remove static electricity, EXAIR can improve your process.  And if you have locations outside of U.S. and Canada, we can still help you.  You can contact us directly or visit our International Map.  You may find someone near you that can speak your language and discuss the values that EXAIR represents.  You will be glad you did.

Welcome to EXAIR.
Bienvenido a EXAIR.
Bienvenue chez EXAIR.
Добро пожаловать на EXAIR.
Witamy w EXAIR.
欢迎来到EXAIR。
Willkommen bei EXAIR.
Tervetuloa EXAIR: iin.
EXAIRへようこそ。
Bem-vindo ao EXAIR.
EXAIR에 오신 것을 환영합니다.
مرحبًا بك في EXAIR.

John Ball
Application Engineer

Email: johnball@exair.com
Twitter: @EXAIR_jb

Proper Plumbing Prevents Poor Performance

There’s nothing quite like an ice-cold Coke from McDonald’s. While there’s many reasons for this, one of the reasons for the unique experience of a McDonald’s Coke lies in the straw itself. In their drinks, they provide wider straws that are designed to help enhance the taste of Coca-Cola, or so they claim. Another impact of this is it allows you to drink significantly faster. The wider the opening for liquid to pass through, the more volume you’re able to drink. Imagine trying to drink your Coke, or any other beverage, through a coffee stirrer. I imagine you’re going to have a difficult time and a dry mouth as you try and force what little amount of liquid you can through the small I.D. of a coffee stirrer. Try that with a milkshake and the problems compound…..

The same is true when it comes to plumbing of your point-of-use compressed air products. I recently assisted a customer that was experiencing lackluster performance from the Super Air Knife they purchased. The application was fairly straightforward, they were hoping to reduce the rate of rejected material on their production line of plastic sheets. The sheet goes through a washing process to remove any residual contaminants, then would air dry as it made its way down the line. As the material dried, there were water spots left on the material that would have to then be cleaned off. In the hopes of speeding up the drying process, they purchased a Model 110060 60” Super Air Knife to provide a wide laminar sheet of air to dry the material.

WhatsApp Image 2018-12-13 at 15.49.45 (2)

When they hooked everything up, the flow from the knife seemed far less than they were expecting. They were supplying full line pressure (just over 90 PSIG), so in theory they should feel a strong blast of air from the knife. When they installed a pipe tee and pressure gauge directly at the inlet, they noticed the pressure was dropping to 35 PSIG while the knife was in operation. When this occurs, it’s indicative of a lack of volume of air. This can be caused by undersized compressor,  or improper plumbing. In their case, they were only plumbing compressed air to one center inlet of the knife. For a 60” knife, EXAIR recommends a minimum of (4) air inlets to ensure adequate volume.

SAK plumbingh

The size of these lines is also critical. You can’t force greater volumes of air through a smaller hose or pipe, just like you can hardly drink through a coffee stirrer with any great success. A 60” knife requires a supply pipe size of 1-1/2” for up to a 50’ run, if you’re trying to supply a knife of this length with a 100’long, ¼” ID hose, you’re not going to get the performance you expect. If you’re experiencing less than optimal performance from any of your EXAIR Intelligent Compressed Air Products, there’s a good chance air supply is the culprit. The first step is determining what the actual inlet pressure is, install a pipe tee and pressure gauge right at the inlet. Then, give us a call and we’ll help work through the proper line sizes and ensure that you’re getting the most out of our products.

I hope I didn’t make you hungry or thirsty… But I think I know where and what I’m having for lunch 😊!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Adjustable Spot Cooler Keeps Rollers Rolling

A manufacturer of automotive power transmission shafts was experiencing frequent failure of high pressure plastic rollers on their spin tester.  There are four rollers in a 90° array that center the shaft during spin testing.  They exert a pressure of around 1,500psi onto the shaft while it’s rotating at 1,000rpm.  This generates enough heat to actually melt the rubber coating on rollers, which means stopping testing (which holds up production) while they change out the rollers.  Just for it to start all over again.

This, of course, was an ideal application for a Vortex Tube cooling solution.  They wanted to aim the cold air flow from the dual points of two Model 3925 Adjustable Spot Cooler Systems at four points of the shaft, right where it starts to contact the rollers.

Model 3925 Adjustable Spot Cooler System has a Dual Outlet Hose Kit for distribution of cold air flow to two points.

Thing was, they wanted to mount the Adjustable Spot Coolers where they could have access to the Temperature Control Valve, but the cold air Hose Kit wouldn’t reach the shaft.  So they got a couple of extra sections of the cold air hose…they needed one section of the ‘main’ (shown circled in blue, below) to reach into the test rig’s shroud, and two sections of the ‘branch’ (circled in green) to reach to each roller.

If you need a little extra reach from an Adjustable Spot Cooler or a Cold Gun, the cold air hose segments snap together, and apart, for any length you need.

Now, adding too much hose length will start to put line loss on the cold air flow, and it will pick up heat from the environment.  But if you just need that extra foot of hose to get the job done, this generally works just fine.  The extra foot or so they’ve added (5″ to the main and 6″ to each branch) has solved their problem…they haven’t had to replace a roller since the Adjustable Spot Cooler Systems were installed.

If you’d like to find out more about how EXAIR Vortex Tubes & Spot Cooling Products can prevent heat damage in your operation, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

 

Common Compressed Air Symbols

When any product / system is designed drawings are made to assist in the production of the designed product. For example if a mechanical part is being machined you may see symbols like these to verify the part is made correctly:

GD&T
GD&T Symbol Examples

Same with an electrical panel, they use symbols like the ones below to note the type of equipment used in a location.

electronic.JPG
Electrical Symbol Examples

 

Then there’s the Piping & Instrumentation Diagram (P&ID)…it depicts an overall view of a system, showing the flow (usually fluid or electricity) through that system’s components, giving the viewer an understanding of the operation, and expected results from said operation.

Some examples of symbols you might find in a compressed air system are:

Compressors:

all-compressor
The one on the left can be used for any air compressor. The others denote specific types of air compressor (from left:) Centrifugal, Diaphragm, Piston, Rotary, and Screw.

 

Air preparation & handling:

filters-and-regulator-symbols-and-pic.jpg
The symbols on the left denote the EXAIR products on the right: Automatic Drain Filter Separator, Oil Removal Filter, and Pressure Regulator

Instrumentation and control:

instrumentation-and-controls1.jpg
The symbols on top denote the EXAIR products below (left to right): Flowmeter, Pressure Gauge, and Solenoid Valve

Occasionally, we’re asked if there are standard ANSI or ISO symbols for any of our  engineered Intelligent Compressed Air Products…and there aren’t.  Perhaps one day they might make the cut, but for now, their standard convention is to choose a shape and call it out by name.  It might look something like this:

sak-pid1
From top left, and then down: Automatic Drain Filter Separator, Oil Removal Filter, Pressure Regulator, and Super Air Knife

If you have questions about any of the quiet EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Next Level Customer Service

I recently spoke with a customer who is a casting / machining manufacturer.  They had an automated cell that was finish machining a feature on a cast aluminum part then placing it on a conveyor belt for an operator to pick up and continue processing.

The parts were placed 3 pieces wide per row and the conveyor would index with every three parts.   The operator would pick three pieces up and transfer them to another station during the machining time.  These parts were carrying residual machining coolant and debris onto the outbound conveyor.

The operator would blow them off with a handheld blow gun and all the coolant and chips would generally end up on the floor in the area causing a slip hazard.  The focus of the project is to eliminate the safety hazards and leave the parts as clean as possible for the inspection and further process.

The metal parts were positioned similar to the parts I placed in the mock up picture below.  The conveyor the customer has is an open mesh conveyor so the process will work better than if it was a solid belt like in the mock up.

The bulk of the concern from the customer was the outside of the part and they stated that anything to blow out the internal is a bonus.  The objective is to get as much coolant off as possible.   For that we recommended they span the conveyor with a Super Air Knife Kit to blow all the parts off at once.  This is mounted closely in the mock up because the customer had space restrictions.

The Super Air Knife Kit with Universal Air Knife Mounting System will firmly mount the knife over the parts and leave adjustment if needed.
The model 1103 Mini Super Air Nozzles with Stay Set Hoses of various lengths easily bend into place and hold their positioning for the side hole on each part.

Then, because the parts are always placed in the same location with the same orientation we can locate the ID hole with a Mini Super Air Nozzle on a Stay Set Hose of varying length to reach each set of parts as they come through.  Once I had the idea and the products in place I delivered the customer  a quote and dimensional CAD file for each part.

Another recommendation was to use a regulator and filter to control just the knife then operate the three nozzles off their own regulator and filter so that the forces between the two can be varied and the performance of the other is not effected.  Accompanying the models were installation sheets for each item as well.   Followed by the pictures of this mock up for their application.

Needless to say the customer was amazed that we would go to such lengths just to give them more assurance than our 30 day guarantee.  They were extremely thankful and are pleased we shipped from stock and met their installation window.

If you are looking for a creative solution, next level customer service, same day product availability, or just a nice human to talk to about compressed air, contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Generators for the EXAIR Vortex Tubes

Vortex generator

The EXAIR Vortex Tubes use compressed air to generate cold air down to -50 deg. F (-46 deg. C) without any moving parts, freon, or electricity.  By design, it will produce hot air at one end and cold air at the other.  EXAIR offers different cooling capacities ranging from 135 BTU/hr (34 Kcal/hr) to 10,200 BTU/hr (2,570 Kcal/hr).  This cooling phenomenon begins by spinning the air at a high rate of speed inside the Vortex Tube.  The “separation” of temperatures starts at the generator.  In this blog, I will discuss the features of the generator and how our design allows for an efficient way to cool and heat the air flows.

Vortex Family

EXAIR stocks three different sizes of the Vortex Tubes; small, medium, and large.  Each Vortex Tube will use a generator to define the cooling capacity and compressed air usage.  When compressed air enters the Vortex Tube, it will have to pass through the generator first.  The generators are engineered with vane openings to initiate the spinning of the air and to control the amount of air that can pass through it.  As an example, for a medium-sized Vortex Tube, a model 10-R generator will only allow 10 SCFM (283 SLPM) of air at 100 PSIG (6.9 Bar).  While in that same size body, a model 40-R generator will allow 40 SCFM (1,133 SLPM) of air at 100 PSIG (6.9 Bar) to be used.  Precision in the design of the generators is what sets EXAIR apart with efficiency and effectiveness in cooling.

EXAIR Vortex Tube Performance Chart

EXAIR created a chart to show the temperature drop for the cold end and temperature rise for the hot end, relative to the incoming compressed air temperature.  Across the top of the chart, we have Cold Fraction and along the side, we have the inlet air pressure.  The Cold Fraction is the percentage of the inlet air that will blow out the cold end of the Vortex Tube.  This is adjustable with a Hot Exhaust Air Valve at the hot end.

As you can see from the chart, the temperature difference changes as the Cold Fraction and inlet air pressure changes.  You may notice that it is independent of the size of the generator.  So, no matter which size Vortex Tube or generator is used, the temperature drop and rise will follow the chart above.  But just remember, cooling capacity is different than cooling temperature.  At the same settings, a larger generator will give you more mass of air to cool faster.

Now, let’s look inside the Vortex Tube (reference photo above).  As the compressed air passes through the generator, the change in pressure will create a powerful vortex.  This spinning vortex will travel toward one end of the tube where there is an air control valve, or Hot Air Exhaust Valve.  This valve can be adjusted to increase or decrease the amount of hot air that leaves the Vortex Tube.  The remaining part of the air is redirected toward the opposite end as the cold flow, or Cold Fraction.

Now, what separates EXAIR Vortex Tubes from our competitors are the three different styles of generators and two different materials for each size.  These generators are engineered to optimize the compressed air usage across the entire Cold Fraction chart above.  With temperatures above 125 oF (52 oC), EXAIR offers a brass generator for the Vortex Tubes.  The same precision design is applied but for higher ambient temperatures.  With the wide range of Vortex Tubes and generators, we can tackle many types of cooling applications.

If you would like to discuss your cooling requirement with an Application Engineer at EXAIR, we will be happy to help.  This unique phenomenon to generate cold air with no moving, freon, or electricity could be a great product to use in your application.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Applying a Vortex Tube and Adjusting Temperature

Throughout my tenure with EXAIR there are may days where I have tested different operating pressure, volumetric flow rates, back pressures, lengths of discharge tubing, generator compression, and even some new inquiries with cold air distribution all on a vortex tube.  These all spawn from great conversations with existing customers or potential customers on different ways to apply and applications for vortex tubes.

Many of the conversations start in the same spot… How exactly does this vortex tube work, and how do I get the most out of it?  Well, the answer is never the same as every application has some variation.  I like to start with a good idea of the area, temperatures, and features of exactly what we are trying to cool down.  The next step is learning how fast this needs to be done.  That all helps determine whether we are going to be looking at a small, medium, or large vortex tube and which cooling capacity to choose.   After determining these factors the explanation on how to adjust the vortex tube to meet the needs of the application begins.

This video below is a great example of how a vortex tube is adjusted and what the effects of the cold fraction have and just how easy it is to adjust.  This adjustment combined with varying the air pressure gives great versatility within a single vortex tube.

The table below showcases the test points that we have cataloged for performance values.  As the video illustrates, by adjusting the cold fraction lower, meaning less volumetric flow of air is coming out of the cold side and more is exhausting out the hot side, the colder the temperature gets.

EXAIR Vortex Tube Performance Chart

This chart helps to determine the best case scenario of performance for the vortex tube.  Then the discussion leads to delivery of the cold or hot air onto the target.  That is where the material covered in these two blogs, Blog 1, Blog 2 comes into play and we get to start using some math.  (Yes I realize the blogs are from 2016, the good news is the math hasn’t changed and Thermodynamics hasn’t either.)  This then leads to a final decision on which model of vortex tube will best suit the application or maybe if a different products such as a Super Air Amplifier (See Tyler Daniel’s Air Amplifier Cooling Video here.)is all that is needed.

Where this all boils down to is, if you have any questions on how to apply a vortex tube or other spot cooling product, please contact us.  When we get to discuss applications that get extremely detailed it makes us appreciate all the testing and experience we have gained over the years.  Also, it helps to build on those experiences because no two applications are exactly the same.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF