Okay, so I’m not talking about counting cards in Las Vegas, like was shown in the movies Rain Man or 21. I’m talking about how a manufacturer of playing cards may count them. I visited a manufacturer of playing cards. It was fascinating learning that they only use specific relative humidity cardstock for certain geographic locations. It totally makes sense once I thought about it, send a “wet” card to a dry geographic location and it will warp or shrink, send a “dry” stock to Atlanta and you’ll get wrinkled swollen cards once they hit the humid air. This manufacturer handled every aspect of the cards. They always ran into issues when it came to a single production line.
This production line would take the printed sheets of cards, which would get placed in a large stack then fed through a cutter that would result in columns of cards, then stack and cut the columns into single cards. They would then get stacked again and the machine would then fan them out. The machine used two friction band conveyors to move the cards at a high rate of speed. They moved so fast it looked as though they overlapped. It was only when you fixated on a single card and followed it you would see it was separated by a few inches from the next.
This machine would stack all the cards up then separate them to each number and suit by dropping them into a chute. Next, it would drop the cards out of those chutes and recombine them into a stack of eight complete decks of cards. It would box them, label it and spit it out. They then went to casinos. This machine was a static nightmare when running dry card stocks during the winter months in the dry air.
The cards would stick together, double feed, and really just leave the company with a bad hand. When I visited though, I had an Ace up my sleeve. I had a Static Meter and a Gen4 Ionizing Point in my possession. The static meter was used to identify the highest static levels in their process, and the Ionizing Point, which we were able to easily hold within 2″ of the cards where they were first jamming. Which was the very first fanning operation. Once the Ionizing Point was installed at this location, rather than seeing any misfeeds or jams within the first 3 stations, the problem moved to “drop station number five”. We then added another to just before the fifth station and saw improvements down to station nine.
The key observation here was that it was not possible to eliminate the static throughout the entire process. This is because there is a constant generation of static due to friction of the belts sliding under the cards and the cards being stacked then slid out from one another. As soon as the cards would leave the ionized 2″ radius around the Gen4 Ionizing Point the static would begin to regenerate on the surfaces. While it wouldn’t immediately reach a problematic point for this process, it would build up over the course of a few stages. This is why it is critical to place a static eliminator at the point it is causing the problem, rather than just at the beginning of a process, and then assuming static will not come back.
In order to reach the solution, we implemented an Ionizing Point at each location that was experiencing an issue. The number of finished decks the company was able to produce, increased. They moved on to the packaging station and made their way into the casinos.
If you would like to discuss a Gen4 Ionizing Point or any point of use compressed air process / manufacturing process, please let us know.
Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF