EXAIR Static Eliminators Provide a Solution for a Plastic Blasting Media Application

A customer had an application where they were using a plastic blasting media (PBM) to remove a coating from composite sheets. Being that I was unfamiliar with this type of blasting media, I went to the web for research.  This process is very interesting as it can remove coatings, paint, powder coats, etc. without harming the substrate.  It is widely used in the automotive and aerospace industries as it can be used on materials like very thin metals, composites, and even hardwood.

In our experience with non-conductive materials, static can be a huge problem. And in this case, it was.  The PBM was “sticking” to everything including the composite material that was being cleaned.  They were losing material as it was leaving the blasting chamber.  As with any type of blasting system, you want to reuse the material to economically reduce waste and keep the operation running longer.  As you can see in the picture below, the PBM is clinging to the internal components because of static.  This static force was keeping the PBM attached to the composite sheet and allowing it to leave the chamber.

Inside the Plastic Blasting Media cabinet

Inside the Plastic Blasting Media cabinet

As a quick remedy, they tried to use compressed air to blow the PBM back into the cabinet. They were using copper tubes that were flattened to create a homemade nozzle.  This style of nozzle is unsafe and very loud.  It was also difficult to get the correct amount of blowing force because static can build at different rates.  The higher amount of static charges, the stronger the attraction.  They needed a better method as they found themselves wasting not only the blasting material, but also much compressed air.

With applications similar to this, we like to remove the static at the problem area. Then, we do not have to be concerned about the static forces.  For their application, the cabinet had a 6” wide opening where the composite material would exit.  So, I recommended two pieces of the model 111206, 6” Super Ion Air Knife Kits, to be mounted just outside the cabinet.  One Super Ion Air Knife would be mounted above the sheet to clean the top surface, and the other mounted below the sheet to clean the bottom surface.  I recommended that they position the Super Ion Air Knives at a 45 deg. angle to the surface of the composite sheet in the counter-flow direction.

This position will optimize the performance of the Super Ion Air Knife.  It increases the contact time to coat the surface with ions to remove the static and to keep the PBM inside the cabinet.  With the design of the EXAIR Super Ion Air Knife, it has a 40:1 amplification ratio.  That means that for every 1 part of compressed air, it will entrain 40 parts of ambient air.  So, it can operate with much less compressed air.  Once they mounted the Super ion Air Knives, they were amazed at the performance.  It was very quiet; it used very little compressed air; and it kept the composite sheets completely clean.  After the static forces are removed, it only needed a light breeze to remove the PBM from the surface.

Super Ion Air Knife

Super Ion Air Knife

If you find that static is creating process problems, wasting time, and costing you money, EXAIR has a large line of Static Eliminators that can help you. For this customer, it was a simple phone call to EXAIR that got his operation back up and running fast and smooth without static.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

What Makes Things Easier Than An EXAIR Static Eliminator? Another EXAIR Static Eliminator!

A contract manufacturer, servicing the medical and biotechnology markets, is a long time user of our Ion Air Guns. They’ve had great success with them in keeping their products free from static & dust for years. These are mainly small, hand-held parts, so, when they need to get them clean and static-free during assembly and packaging, EXAIR’s Ion Air Gun is ideal, because it, too, is small and hand-held.

A new process, though, involves the operator needing both hands for assembly. This would mean picking up the Ion Air Gun, blowing off the part, putting it down, and then using both hands to complete the operation. They thought there had to be a better way. And they were right!

The Model 8910 Instant Static Elimination Station offers hands-free control of ionized air flow – a foot pedal turns an Ion Air Jet (whose performance is identical to the Ion Air Gun) on and off with…well, the press of a foot. The Magnetic Base and Stay Set Hose make it easy to install, and even easier to position.

Hand held convenience of the Ion Air Gun (easy) or no-hands convenience of the Ion Air Jet Station (easier.) Your call.

Hand held convenience of the Ion Air Gun (easy) or no-hands convenience of the Ion Air Jet Station (easier.) Your call.

For an even more automated approach, they are considering an EFC Electronic Flow Control. They’re ready to go, right out of the box…the photoelectric sensor will open and close a solenoid valve (installed in the compressed air supply line) based on the setting of the programmable timer unit. With a simple wave of the part in front of the sensor, the operator could activate a preset blow of a few seconds, which would be easy to determine, even easier to set, and…easiest of all…reliably repeat all day long. They’re going to try out the foot pedal first, and that’s just fine by me.  Perhaps there’s such as thing as “too easy,” but man, I hope not.

Even if you’re already using EXAIR products to make things easy, you can call me to see how much easier it might get.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Speaking of easy...get a FREE AC Sensor with a Static Eliminator order. Promotion ends 1/31/2017!

Speaking of easy…get a FREE AC Sensor with a Static Eliminator order. Promotion ends 1/31/2017!

Solving a Printing Problem with EXAIR Static Eliminators

img_5724

Unrolling plastic into this machine created a static charge throughout the process

One of the most common sources of static electricity in automated processes is friction.  As two (or more) materials move against each other, static is produced due to the triboelectric effect.  By definition, the triboelectric effect is a type of contact electrification in which certain materials become electrically charged after they come into frictional contact with a different material.  If these materials are non-conductive, or if they are not grounded, the static charge will remain.  This was the case for the machine shown above.

img_5723

Multiple stations of this machine, all experiencing static problems

This machine is a Chesnut 150 Gravure Print Station.  It is used for printing, coating, laminating, and sometimes die cutting of paper, light paperboard, films, polyester, flexible packaging and aluminum foil.

In this application, a roll of plastic is dispensed, but a static charge is preventing proper printing on the plastic as it travels from roll to roll.  As the film is separated from the roll, a static charge is produced, and this charge is carried through the process at values ranging from 3,000 – 20,000 volts.  The manager for this production area contacted EXAIR to see if there’s a viable EXAIR solution to remove this static charge.  They were interested in a solution that could eliminate static on the full width of the plastic, could be mounted 200-300mm away from the rollers, and could be replicated at multiple places along the machine.

With this in mind, the best solution was to use a series of 18” Super Ion Air Knives installed periodically along the path of plastic within the machine.  Operating at a low pressure of 1-2 BARG (14.5 – 29 PSIG), the Super Ion Air Knives create an evenly dispersed, quiet airflow of static eliminating ions with a low compressed air consumption.  Using the laminar, static eliminating airflow from the Super Ion Air Knife, this solution can be mounted away from the static charge, allowing the ions to “rain” down on the affected areas.

For this application finding a solution meant finding a method to keep production on schedule.  Without static elimination this machine faced defects, downtime, and decreased efficiency.  Using EXAIR Super Ion Air Knives brought this application back up to optimal operating speeds, keeping the revenue generating process of this manufacturer ongoing.

Colder weather is here and static comes along with it.  If you’re experiencing a static related problem in your facility, contact one of our Application Engineers.  We’d love to help you find a solution.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Ion Bars Eliminate Jam In Fiberglass Production

Last week I worked with a specialty glass manufacturer who was experiencing a static issue in their fiberglass mat production. Their particular production cycle consists of a rotary spinning process where molten glass exits a furnace and goes into a cylinder with several holes that rotates at high speed, causing the glass to be “pushed” through the holes. Upon exiting the cylinder, the fibers are blown down on to a conveyor belt underneath, treated with a binder and pressed together, then sent to an oven to cure. After the sheets exit the oven, they are air cooled, cut to the desired length, then sent to a sorter that directs the material to collection bins, based on thickness and length. It is at this point that they were seeing the parts start to “bunch” up, which caused the system to be shut down so an operator could manually clear the jam and sort the mats. The customer has experienced static issues before in other parts of their plant and took some readings and were seeing a 4 kV charge on the surface of the mats.

After discussing the details of the application, I recommended they use our 24″ Ionizing Bar, the width of their widest mat. The Ionizing Bars produce a high concentration of positive and negative ions to eliminate the surface static of an object when mounted within 2″ of the surface of the material. At 2″ away, the units are capable of dissipating a 5kV charge in less than half a second. By placing a unit above and below the exit point of the sorter, they would effectively remove the surface charge and eliminate the potential jam.

Ionizing Bars Work

Ionizing Bars are effective up to 2″ away and require no compressed air to operate.

Our Ionizing Bars are available in lengths from 3″ up to 108″ for a variety of small or wide surface treatment applications. For assistance selecting the best product for your specific requirements, please contact one of our application engineers at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Solving Static Problems with EXAIR Ion Bars

pic-2

This plastic film stretching machine needed a viable static elimination solution.

The relationship between humidity and static is something we’re very familiar with at EXAIR.  As temperatures drop and humidity decreases, the reduction in moisture content within the air translates to an increase in static .  This is because higher moisture content in the air creates a surface layer of moisture that dissipates accumulated static charges.  When this surface layer disappears, static forms quickly and easily.

Fortunately, we have a full line of static eliminating equipment suitable for use in removing static related process disturbances.  For example, the photo above shows a plastic stretch wrapping machine at its dispensing point.  As the plastic is pulled from the roll static builds up quickly and this customer needed an easy, reliable solution to remove the static.  Ideally, they wanted something that would not require compressed air, but could still mount closely to the machine and remove the static charge.

The solution for this application was a series of two 24” Ion Bars mounted on each side of the film.  As the plastic is unrolled it passes through the opening created by the Ion Bars, eliminating the static charge.  The machine required no significant downtime to install this solution, and nothing within the machine setup had to be modified.

This type of setup was ideal because it treated the static at the proper point within the process, used no compressed air (as requested by the customer), and it provided a simple installation to solve the problem.

Plastic sheets and films that are being separated after full contact can generate significant static charge.  If you have a film/sheet application, or another static related need, contact an EXAIR Application Engineer.  We’d love to help you find a solution.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Removing Debris from Jars Prior To Filling

pv-500-jar-image-without-sleeve

These PET jars needed a way to remove static dust prior to filling with product

Back in the spring of this year I had some interaction with a customer in India about a Vortex Tube application.  At the time, they were facing an overheating condition and needed some guidance as to which model would provide the best solution.

Fast forward to this week and this same customer reached out to me again, this time for a static problem.  The application in question was plagued with difficulty in removing small dust particles from the inside of PET jars (shown above).  The jars range from 220-260mm in height (8.6”-10.25”), 80-100mm (3.1”-4”) in diameter, and travel through the process at a speed of ~40 units per minute.

Due to static charge, the dust in this application would adhere to the inside of the jars, presenting a problem with filling during the next stage of the process.  What this customer needed was a way to remove the static, blow away the dust, and then pull a slight vacuum on the jars as a safeguard against any remaining dust.

The solution was to use the Stay Set Ion Air Jet to blow into the jars, removing the static and blowing away the dust, followed by a Super Air Amplifier to remove any dust particles which were not removed by the Ion Air Jet.

The customer was happy with this solution, but there was a bit of hesitation as to whether the Air Amplifier would be able to truly remove debris from the jars.  In an effort to visualize the effects of an Air Amplifier on this type of application I made the short video below.

This video shows paper pieces inside of a cylinder of comparable height to the jars in this application.  After the paper is placed in the cylinder the model 120021 Super Air Amplifier is used to pull the paper out of the cylinder, mimicking the effect it will have on residual dust in the customer’s application.  After seeing the video the customer was confident in the application solution.

Providing this type of assistance for our customers is nothing new for us at EXAIR.  We’re available via phone, online chat, or email for all of our customers, and commit to taking the time needed to really provide the assistance needed.  If you find yourself in need of solid engineering support for an application in your facility, contact an EXAIR Application Engineer.

 

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Ion Air Jet Improves Teflon Gasket Cutting

If your familiar with our blog, you may have noticed that a common theme lately has been static.  Take for example our recent blog titled  Static Can Become A Big Issue With Winter Approaching , details how static was negatively affecting an automobile instrumentation assembler’s production or another one titled Static Electricity – What is it? , providing a better general understanding of the phenomena. Here in Cincinnati we’ve had some relatively mild temperatures lately but this weekend it was just downright cold. Now that our furnace is running, the humidity in the house is starting to be removed which not only wreaks havoc on our hardwood floors, but in winter’s past, it seemed like every time one of us touched each other or something metal , we got “zapped” due to static. As many homeowners do, I’ve purchased several humidifiers and strategically placed them throughout the house which has helped immensely. While this is a good approach for a residence, it’s not as easy an alternative when dealing in an industrial setting.

I recently worked with a customer in the northeastern U. S. who manufacturers Teflon gaskets. As the Teflon tube exits the extruder, a blade passes by and cuts a very thin cross section of material which drops into a collection bin underneath. During the spring and summer months, the process was running seamlessly but over the past couple weeks, temperatures in the area have dropped, causing the company to turn on the large, gas heaters on the production floor. Now that the air is starting to dry out, they are beginning to see the gaskets cling to the blade and surrounding tooling which is not only causing damage to the part itself but it’s also resulting in production delays.

Since the area they are needing to treat is relatively small, I recommended they use our Ion Air Jet. The Ion Air Jet  provide a focused stream of ionized air to eliminate the surface static of a material or object. By incorporating a pressure regulator to operate at low pressure, they would be able to reduce the outlet force and velocity, allowing them to gently blow the airflow across the area as to not disrupt the collection of the parts.

NEW Ion Air Jet
Static can cause a variety of nuisances in industrial settings ranging from damage to sensitive electronics, machine jams, parts or sheets sticking together, and personnel shock just to name a few. If you need any help selecting the best EXAIR product for your needs, don’t hesitate to ask one of our application engineers for assistance. I’d be shocked if we couldn’t help. (I know, not punny).

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

%d bloggers like this: