An E-Vac Improves Manufacturing of Contact Lenses

 

Contact Lens

Vacuum pumps have vanes, electric motors, and bearings that can wear out.

A contact lens manufacturer called EXAIR to ask about our E-Vac Vacuum Generators.  Their operation consisted of using a small vacuum cup to grab the contact lens for polishing.  Due to the long hours of operation, their mechanical vacuum pump would start to malfunction.  The vacuum pressure would start to decline, and the contact lens would begin to shift or fall off.  This would affect the clarity of the lens, and it would have to be rejected.

Our company found that the vanes in the vacuum pumps would start to wear. They would have to shut down the process to recondition the vanes, causing down time.  After a few times of refurbishing the pump heads, the bearings in the electric motors would then start to wear.  A loud high pitch noise would be generated, indicating that the motors needed to be replaced.  This would cause even more downtime.

EXAIR E-Vac Vacuum Generator

After carefully reviewing the customer’s needs, I suggested the model 810002M E-Vac High Vacuum Generator.  This model can create a vacuum level of 27” Hg with only using 2 SCFM of compressed air; perfect for holding the contact lens firm to the vacuum cup for polishing.  The E-Vac has no moving parts or bearing to wear out.  They use compressed air to generate a venturi vacuum, so the only maintenance is to clean or change the compressed air filter yearly.  Its compact size made the E-Vac more versatile than the much larger vacuum pump that it would replace.  The customer could mount the E-Vac much closer reducing the volume of air in the vacuum lines to evacuate.  This gave them an almost instantaneous vacuum at the lens which could improve the speed of the operation.

If you wish to eliminate downtime to fix, change, or recondition motors and pumps, the E-Vac could be the vacuum pump for you.  If you need help to size the correct model for your application, you can contact an Application Engineer at EXAIR.

John Ball
Application Engineer

Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Photo: Contact Lens by Andy Simmons.  Creative Commons Attribution-NoDerivs 2.0 Generic.

Keeping Sensitive Equipment Cool with an EXAIR Cabinet Cooler

The image above shows a sophisticated microscope used in a highly controlled environment to monitor living cells.  The end user of this microscope recently contacted the Application Engineering department at EXAIR in search of a method to cool the internal temperature of the microscope chamber from 22°C (72°F) to 14°C (57°F).

The small space of this application made the use of a typical refrigerant based air conditioner an impossibility.  But, near to this microscope is a source of very dry, clean, oil free compressed air – perfect for operating a Cabinet Cooler.

The internal heat load of this application was known by the end user, but the effects of external heat load on the application were still unclear.  In order to determine the full heat load of the application a Cabinet Cooler Sizing Guide must be used to perform heat load calculations.  This document, once complete, allows EXAIR to determine both internal and external heat loads, which in turn allows us to determine the required Cabinet Cooler model number.

This application was served by the model 4325 Cabinet Cooler, which allowed for a cooling solution in tight spacing where a traditional air conditioning unit wouldn’t work.  The small and compact design of the Cabinet Cooler was the perfect fit for this customer and application need.  If you have an application in need of a cooling solution, contact an EXAIR Application Engineer.  We’ll be happy to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

It’s Earth Day! Do Your Part Tomorrow and Throughout the Year.

Saturday, April 22nd marks the 47th annual Earth Day and it will be observed in over 193 countries.  For EXAIR, this year marks our 34th year helping compressed air users save compressed air energy and electrical resources. It is also another year that we continue to focus on manufacturing our products with minimal impact and doing our part to help protect our planet. We are proud to manufacture efficient products, implement processes and programs throughout our facility to help use our resources wisely and recycle everything we possibly can. 

First and foremost, we manufacture and sell Intelligent Compressed Air Products that are specifically designed to reduce the use of compressed air throughout facilities.  On top of that, when you purchase an EXAIR product it will arrive in fully recyclable packaging and, in most cases, is made from a material that will be recyclable should it reach a point it is no longer useful.

EXAIR recycles 100% of the metal scrap from our machining processes, which equates to 6.5 tons. Our cardboard and mixed paper products are also recycled 100%. Of the waste we place into our trash dumpsters – 80% is recycled and 20% is sent to the landfill.  The paper products even get down to all of paper towels that are used and all the scratch paper that the office utilizes.   In total, EXAIR recycled tons 36.6 tons of paper and cardboard in 2016 which equates to 80% of the solid waste we produce is recycled.  We focus on more ways to improve this percentage every year (I am still trying to convince everyone to reuse the coffee and filters in the coffee maker).  Something about it got so thick you needed a spoon to “drink” your coffee.

Another waste reducing factor that has proven to work out well for EXAIR is asking every customer if they accept digital invoices rather than requiring them to be printed and mailed.   Thanks to our wonderful customers we have been able to eliminate 91% of all printed and mailed invoices which helps to reduce our resources used as well as the amount of materials that are possibly turned into solid wastes at their facilities. This also prevents the gas and vehicles necessary to deliver all of these invoices by mail. 

We also generate and recycle our wastewater for reclamation – in 2016 we recycled 1008 gallons. 

To get back to what EXAIR products have done to help reduce waste, we were also able to optimize our own compressed air system by eliminating air leaks and have saved 1 million cubic feet of compressed air.  We have also utilized our very own Chip Trapper Systems in our manufacturing areas and extended the water soluble coolant life from 6 weeks per changeover to 6 months per changeover. Keeping our coolant clean allows us to minimize the total amount of wastewater we recycle each year. 

On top of all the efforts above, we also continue to maintain RoHS compliance on all electronic products, as well as actively track our supply chains to ensure no Conflict Minerals are being sourced from the Democratic Republic of Congo.

If you have any questions on how we can help your facility reduce their use of compressed air or why we continue to reduce our wastes and increase our recycling efforts, contact us.

To see our full Sustainability Plan follow this link.

Enjoy Your Weekend,
EXAIR Corporation

Thank you to Kate Ter Haar for the Happy Earth Day image. Creative Commons License. 

If at First You Don’t Succeed Try, Try Again!

Over the past few weeks I’ve been going back and forth with my phone provider over some technical issues I’ve been having with the device. After some troubleshooting, we were able to conclude that the antenna has likely become loose, leading to the phone periodically not receiving service. Naturally, we’re outside of the 1-Year “Warranty” period that covers a defective device. I paid my insurance deductible and received a “refurbished” phone the following day. Unfortunately, this refurbished phone was unable to take pictures with the front-facing camera. I know what you’re thinking, how on Earth can I take selfies without a front-facing camera? So it was back to the phone provider to get another replacement, fortunately this time they sent a brand new device.

There’s nothing more frustrating than trying to get something to work right out of the box, only to experience issues. Whenever a customer is having an issue with a particular product, there’s a certain progression that we go through in order to assess the problem and determine the root cause. In some cases it is something simple, others it can be a few individual problems that are compounding each other. I recently assisted a customer that was having problems with his 110 Gallon Reversible Drum Vac System. He was having difficulty pumping water out of a container and into the 110 gallon drum. He stated that he just received the unit and was unable to get it to work.

RDV pic

EXAIR’s Reversible Drum Vac installed on a 110 Gallon Drum

This is a call that we get from time to time, and is generally remedied pretty quickly. Our first step is to check the air pressure at the inlet of the Reversible Drum Vac while it is operating. We recommend an inlet pressure of at least 80 PSIG for proper operation. By installing a pipe tee with a pressure gauge directly at the unit, we can not only verify the inlet pressure but also that the Reversible Drum Vac is being supplied with an adequate volume of compressed air. If the pressure on the gauge begins to decrease once the unit is in operation, we can conclude that the volume of compressed air to the Reversible Drum Vac is insufficient. This can be due to the use of restrictive quick disconnect fittings, improper line size, or a compressor that is undersized.

If the air supply is sufficient, we then inspect the system for vacuum leaks. If the drum does not have a complete seal, the system will not function. If there’s no vacuum leak and there is an adequate supply of compressed air, the Reversible Drum Vac likely needs to be cleaned. It took us a few tries to get there but through a little bit of trial and error, we were able to determine that this was exactly the case in this scenario. Even though the system was new, it had been supplied with compressed air that was not properly filtered. Some scale, rust and debris from the customer’s supply lines made its way into the body of the Reversible Drum Vac, impeding the flow of air. Here is a video that shows the cleaning procedure for the Reversible Drum Vac. Over time the Reversible Drum Vac can accumulate debris inside of the plenum chamber. Regular maintenance of the unit will ensure that it stays within specifications for when it’s needed most!

If you have an EXAIR product that’s not performing as well as it used to, give us a call. One of the Application Engineers will be able to walk you through the steps to ensure that you’re getting the most out of our products!

Tyler Daniel
Application Engineer
E-mail: tylerdaniel@exair.com
LinkedIn: @EXAIR_TD

Mini Cooler Improves Custom Cutlery Production

Vortex Tubes use compressed air to create a stream of cold air and a stream of hot air. As the compressed air enters the unit, it travels through a spin chamber which spins the air at speeds up to 1,000,000 RPM producing temperatures ranging from -50°F to +260°F and providing cooling up to 10,200 Btu/hr. With no maintenance requited and no moving parts, they have become quite popular in large and small scale cooling applications in place of more conventional methods of cooling.

How an EXAIR Vortex Tube Works

EXAIR has incorporated this technology into several different products like our Cabinet Cooler Systems used to cool electrical panels and our Cold Guns commonly used to replace messy mist systems in tool cooling, milling and machining operations. For smaller scale processes we offer our Mini Cooler System which provides a 50°F temperature drop from the compressed air supply temperature and 550 Btu/hr. of cooling capacity.

I recently worked with a small, custom knife manufacturer who was looking for a way to keep his tooling cool during production. As the blades are made, he uses a small rotary die tool to shape and sharpen the blade. He also makes his own handles out of materials like wood, ceramics or other metals, which get etched with a custom design into the surface. The heat generated during theses processes, causes the tooling to either bend or break completely, resulting in damage to the knife blade and burns or breaks in the wood and ceramic handles. After looking at our spot cooling products online, he familiarized himself with the Vortex Tube technology but with only 12.9 SCFM of air available, he was unsure what product would best fit his application.

With the limited amount of air available, the Model # 3808 Mini Cooler System was the perfect solution. The Mini Cooler uses only 8 SCFM @ 100 PSIG, falling well within the capacity of his current compressor. The integral magnetic base would ensure an easy installation and with the included flexible hose, he could direct the cold air to the needed area.

The Mini Cooler is ideal for small tool and part cooling applications.

For help with your spot cooling needs or to discuss how the Vortex Tube technology could help in your process, contact an application engineer for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

 

Video Blog: The EXAIR Ultrasonic Leak Detector Works for Vacuum Leaks?

 

A brief video showcasing the EXAIR model 9061, Ultrasonic Leak Detector’s, performance on vacuum leaks.  For more information or questions on what else the ULD can be used for, contact an Application Engineer!

 

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

Super Air Knife Math – When 72 + 72 = 75

The Super Air Knife is the latest generation of EXAIR engineered air knife that dramatically reduces compressed air usage and noise when compared to other blowoffs.

Super Air Knife Data

From the chart above, the Super Air Knife when supplied with 100 PSIG of compressed air has a sound level of just 72 dBA (A-weighted decibel scale) when measured from 3′ away.  72 dBA is a moderate sound level, and some common comparisons are ‘normal speaking voice’ at 70 dBA and ‘living room music’ at 76 dBA.

For many processes, such as a bottling line drying operation, a pair of the air knives delivers the best performance. When asked, “what is the sound level for (2) of the knives,” a little Acoustic Engineering is in order. Because the decibel scale is logarithmic, the result is not as simple as adding 72 + 72 = 144.  144 dBA is in the range of a jet aircraft take off! Thankfully, both the actual sound level and the numerical value are determined another way.  I’ll spare you a lot of the math but the equation is as below.

Capture

… where SL1, SL2, SL3 are the sound levels in dBA of the each sound makers, for as many that are being combined.

In the case of (2) Super Air Knives operated 100 PSIG, the combined sound works out to be a quiet 75.0 dBA — a powerful, efficient and quiet product ideal for many applications and process within the manufacturing environment.

Super Air Knife

Super Air Knife

As a helpful rule of thumb- combining any (2) items will yield an increase of 3 dBA, combining (3) results in a rise of 4.8 dBA, and combining (4) results in a 6 dBA rise over just (1) of the items.

The Super Air Knives have been successfully used in a wide range of applications, including part drying, sheet and conveyor cleaning, web cooling, scrap removal, pre-paint dust blowoff, and many, many more.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can make your process better and quieter, feel free to contact EXAIR and myself or one of our other Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

 

%d bloggers like this: