These Nozzles Clean Blind Holes, Pipe Inside Diameters, Tube, Channels and More

EXAIR manufactures a variety of Air Nozzles and Jets . Back Blow Air Nozzles can help reduce cost, clean hard to get to areas in small diameters, pipes, tubes, channels and holes. These nozzles are designed to remove debris from pipes, blind holes, and other areas where it is difficult be effective. Sometimes it is a bad idea to blow debris all the way through a pipe because there may be personnel on the other end or it is simply too long or it may be sealed on an end. 

The Model 1006SS cleans metal shavings from inside a pipe.

The Back Blow Air Nozzles are all made from 316 Stainless Steel with three sizes as outlined below:

Model 1004SS: This is a M4 x 0.5 and delivers the smallest, most effective airflow for cleaning out small diameter tubes, pipes, channels or holes for diameters between 1/4″ up to 1″. Extension pipes available from 6″ up to 36″ in length.

Model 1006SS: The 1/4 NPT Back Blow Nozzle recommended for a wide range of diameters from 7/8″ up too 4″. Extension pipes available from 12″ up to 72″ in length.

Model 1008SS: 1 NPT female and the largest Back Blow Nozzle in stock for diameters from 2″ up to 16″ with pip extensions available from 12″ up to 72″ long.

Model 1306SS-6-CS Heavy Duty Safety Air Gun with 6″ extension and chip shield

These nozzles can also be assembled to our VariBlast, Soft Grip, Heavy Duty and Super Blast Safety Air Guns. EXAIR safety air gun options include chip shields and pipe extensions up to 72″ long. EXAIR has the products and accessories you need to make any job more efficient saving you time and money. Give us call at 800.903.9247 and ask for any of our qualified Application Engineers to help you. Most items are stock and can be shipped the same day if we receive and enter your order by 3:00PM EDT.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

Application Database: Compressed Air Use in the Automotive Industry

EXAIR uses many different methods to connect with our customers.  We have our website, social media, blogs, publications etc. We like to share solutions for some of the most common pneumatic problems in the industry.  EXAIR generated a large collection of application information where EXAIR products have already solved problems and improved processes.  We organized them by Application and by Industry.  In this blog, I will show you how to use our Application database; specifically, for the Automotive Industry.

Compressed Air Systems are considered to be a fourth utility within industries because they use a large amount of energy.  Whether an air compressor that uses fuel for portable units or that uses electricity, it is important to use this system as efficiently as possible.  This would also apply to the Automotive industry.  EXAIR has a library of different processes in which we already improved these areas safely and efficiently.  If you are part of the Automotive industry, it could benefit you to take a peek at the areas that we already improved, established OSHA safety, and saved money.

Here is how you can find this library.  First, you will have to sign into EXAIR.  Click here: Log In.  Once you fill in the proper information, you can then retrieve a great amount of resources about EXAIR products that we manufacture.   The Application database is under the Knowledge Base tab.  (Reference photo below).

At the Application Search Library, we have over one thousand applications that we reference.  In the left selection pane, we organized then in alphabetical order under two categories, Application and Industry.

Scroll down in the selection pane until you come to the sub-category: Industry.  Under this Sub-category, you will find three selections that are related to this blog: Automation, Automobile Recycling, and Automotive.  We have other applications as well that may relate to your specific processes if you scroll up and down the list like; Part Ejection and Machining.  You will find many product applications that have already improved processes and solved problems.

Why is this important?  If you are a plant manager or owner, the value of the Application Database can improve your current processes with pre-qualified results.  Within the Automotive industry, simple solutions can be found to address those “nagging” issues that you see every day.  For crisis situations and shutdowns, EXAIR categorized these applications in a way to reference quickly and easily.  And since EXAIR has a high volume of stocked items, we can get the parts to you very fast so you can quickly be on your way to a solution.

In today’s market, companies are always looking for ways to cut cost, increase productivity, and improve safety.  EXAIR can offer engineered products to do exactly that.  With the “been there and done that” solutions already described in the Application Database; you can have confidence in finding a way in solving pneumatic issues.  If you do not sign up at www.EXAIR.com and take advantage of these offerings, you will be missing out on a great tool to optimize your compressed air system.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

EXAIR Super Air Knives Blast Away the Competition

When a wide area is in need of cleaning, cooling, or drying there isn’t a better option available on the market than EXAIR’s Super Air Knife. It’s laminar and even airflow across the length has solved process problems and provided manufacturing solutions for thousands of customers. We’ve been manufacturing Air Knives for over 30 years now, with the Super Air Knife making its first appearance back in 1997. Since then, the Super Air Knife has undergone a few enhancements over the years as we’re constantly trying to not only introduce new products but also improve on the ones we have. We’ve added new materials, longer single piece knives, as well as additional accessories.

What sets EXAIR’s Super Air Knife above the competition is the ability to maintain a consistent laminar flow across the full length of the knife, particularly when compared against blower operated knives or even fans. A fan “slaps” the air, resulting in a turbulent airflow where the airflow particles are irregular and will interfere with each other. A laminar airflow, by contrast, will maintain smooth paths that will never interfere with one another.

Blower Style air knife

Blower knives are commonly seen in industry that also cannot provide a laminar airflow. Additionally, they are expensive to purchase, produce a high sound level, and require periodic maintenance. Costly maintenance that results to downtime, as well as the physical space the system takes on the shop floor are all eliminated when using the Super Air Knife.

One of the simplest alternatives to the Super Air Knife is a homemade drilled pipe. While it’s quite easy to put together with materials that are likely already available to you, the true hidden cost here is the operating cost. The high energy use related to the total compressed air consumption makes this “seemingly economic” solution into an expensive one quickly. Not to mention, these devices are not considered to be safe per OSHA 1910.242(b).

The effectiveness of a laminar airflow vs turbulent airflow is particularly evident in the case of a cooling application. The chart below shows the time to cool computers to ambient temperatures for an automotive electronics manufacturer. They used a total of (32) 6” axial fans, (16) across the top and (16) across the bottom as the computers traveled along a conveyor. The computers needed to be cooled down before they could begin the testing process. By replacing the fans with just (3) Model 110012 Super Air Knives at a pressure of just 40 psig, the fans were cooled from 194°F down to 81° in just 90 seconds. The fans, even after 300 seconds still couldn’t remove enough heat to allow them to test.

While the fans no doubt made for large volume air movement, the laminar flow of the Super Air Knife resulted in a much faster heat transfer rate.

Utilizing a laminar airflow is also critical when the airflow is being used to carry static eliminating ions further to the surface. Static charges can be both positive or negative. In order to eliminate them, we need to deliver an ion of the opposite charge to neutralize it. Since opposite charges attract, having a product that produces a laminar airflow to carry the ions makes the net effect much more effective. As you can see from the graphic above showing a turbulent airflow pattern vs a laminar one, a turbulent airflow is going to cause these ions to come into contact with one another. This neutralizes them before they’re even delivered to the surface needing to be treated. With a product such as the Super Ion Air Knife, we’re using a laminar airflow pattern to deliver the positive and negative ions. Since the flow is laminar, the total quantity of ions that we’re able to deliver to the surface of the material becomes greater. This allows the charge to be neutralized quickly, rather than having to sit and “dwell” under the ionized airflow.

With lengths from 3”-108” and (4) four different materials all available from stock, EXAIR has the right Super Air Knife for your application. In addition to shipping from stock, it’ll also come with our unconditional 30-day guarantee. Test one out for yourself to see just how effective the Super Air Knife is on a wide variety of cooling, cleaning, or drying applications.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Vortex Tubes – The Basics, And Beyond

The Vortex Tube might be just about the most interesting compressed air device around.  They have no moving parts, and they don’t need any but a compressed air supply, which they ‘split’ into a hot air stream, and a cold air stream.

EXAIR Vortex Tubes come in three sizes – Small, Medium, and Large – and 24 distinct Models across those three sizes.  They’re all in stock, along with Hot & Cold Mufflers (for sound level reduction,) Automatic Drain Filter Separators (to keep the air supply clean & moisture free,) Oil Removal Filters (to coalesce any trace of oil from the air supply,) and Solenoid Valves & Thermostats (to automate operation.)

From left to right; a few value added accessories for your Vortex Tube: Hot Muffler, Cold Muffler, Automatic Drain Filter Separator, Oil Removal Filter, and Solenoid Valve/Thermostat Kit.

The Vortex Tube, right out of the box, is easily adaptable to a wide range of cooling (or heating) applications.  If your needs are specific, though, we can customize a Vortex Tube to meet them:

  • Material of construction: our stock Vortex Tubes are made of 303SS and are equipped with a plastic Generator and Buna o-ring.
    • For high temperature (>125F ambient) applications, we can install a brass Generator and Viton o-ring, suitable for ambient temperatures up to 200F.
    • If the environment is particularly aggressive, or if industry codes (I’m looking at you, food & pharma) call for it, we can also make them out of other materials.  We’ve, for instance, made them out of 316SS, complete with material certifications, when needed.
  • Flow & temperature: the Hot Valve can be opened or closed to dial in a particular Cold Fraction (that’s the percentage of the supply air which is directed to the cold end.)  If you know what flow rate and temperature you want, we can replace the Hot Valve with a non-adjustable plug, so your Vortex Tube’s cold flow is only dependent on the compressed air supply temperature and pressure.
  • Accessories: if you’re looking for features like a magnetic base, or a flexible cold air hose, you might consider an Adjustable Spot Cooler.  If you like the idea of tool-free change of air flow/temperature, that’s definitely the way to go.  If you want those other options, and don’t mind using a screwdriver to adjust the Cold Fraction, those other options are compatible with any Medium Vortex Tube.

Model 3925 Adjustable Spot Cooler

These are just a few of the most common possibilities for customizing a Vortex Tube.  If you have a spot cooling application you’d like to discuss, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook