James Clerk Maxwell

When most of us think of really smart folks, names like Albert Einstein, Carl Sagan, Stephen Hawking, or Richard Feynman often pop up. It’s interesting that, when THOSE folks thought about really smart folks, one name repeatedly came to mind:

  • “Maxwell’s equations have had a greater impact on human history than any ten presidents.” – Carl Sagan
  • “From a long view of the history of mankind — seen from, say, ten thousand years from now — there can be little doubt that the most significant event of the 19th century will be judged as Maxwell’s discovery of the laws of electrodynamics.” – Richard Feynman
  • “Maxwell is the physicist’s physicist.” – Stephen Hawking
  • “The special theory of relativity owes its origins to Maxwell’s equations of the electromagnetic field.” – Albert Einstein
  • “The work of James Clerk Maxwell changed the world forever.” – Albert Einstein (again)

If you follow the EXAIR blog, you may recall that we’ve written more than a couple of entries on James Clerk Maxwell…here, here, and here, just to point out a few. We, of course, all like to point out a thought experiment that he devised regarding a potential loophole in the 2nd Law of Thermodynamics – a “friendly little demon” that could separate a theoretical chamber of gas (consisting of molecules with different kinetic energies) into two sub-chambers: one with all the faster moving (e.g., higher temperature) molecules, and another with all the slower moving (e.g., lower temperature) molecules.

Fun fact: When Maxwell first proposed this thought experiment in a letter to Lord Kelvin, he called it a “finite entity”. Lord Kelvin (much to Maxwell’s chagrin) started calling it a “demon” and the name stuck.

In what MAY be one of the grandest of coincidences in science, the work of this “finite entity” or “demon” is uncannily similar to that of one of the more interesting compressed air operated devices: the Vortex Tube:

When compressed air flow enters, a spinning motion is imparted by the Generator. When the spinning flow reaches the end of the Vortex Tube, a portion is forced to change directions and continue spinning, in the opposite direction, inside the outer spinning flow. When it does so, it gives off energy in the form of heat. The net result is, the air entering at a given temperature is separated into two distinct air streams: one hot, and one cold.

Now, us compressed air aficionados aren’t the only ones who’ve happened upon latter-day incorporations of Maxwell’s thought experiment. Information theory enthusiasts have implied a correlation with the principle of erasure, and scientists at the University of Oxford designed an experiment with a light-powered gate that seems to validate the idea (“How Maxwell’s Demon Continues to Startle Scientists”, Quanta Magazine, 4/22/2021).

I’ve been with EXAIR Corporation for just shy of eleven years now, and every time I hook up a Vortex Tube in the Efficiency Lab, I still recall the wonder of seeing one in action the first time. Considering that this is a 20th Century innovation (and the information theory & light-powered gate experiments are 21st Century), it’s equally impressive to keep in mind what else was going on in the world when Maxwell devised this thought experiment in 1867:

  • At the beginning of March, Nebraska is admitted as the 37th U.S. State. And at the end of the month, the U.S. finalizes the purchase of Alaska from Russia.
  • Alfred Nobel gets a patent for dynamite in the United Kingdom, in May.
  • The first school for dentistry, the Harvard School of Dental Medicine, opens.

And…in case you were wondering, EXAIR Application Engineers also have a list of folks they consider to be really smart folks. If you’re curious, click here.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

James Clerk Maxwell statue photo courtesy of trailerfullofpix & dun_deagh. Creative Commons license.

Why use EXAIR’s Digital Flow Meters

Since air compressors use a lot of electricity to make compressed air, it is important to use the compressed air as efficiently as possible. EXAIR has six simple steps to optimize your compressed air system. Following these steps will help you to cut electrical costs, reduce overhead, and improve your bottom line. In this blog, I will cover the first step – Measure the air consumption to find sources that use a lot of compressed air.

Six Steps to Optimizing Your Compressed Air System

Information is important to diagnose wasteful and problematic areas within your compressed air system. To measure air consumption, flow meters are used to find the volume or mass of compressed air per unit of time. Flow rates are very useful data points to find problems like leaks, over-use in blow-offs, waste calculations, and comparison analysis.

There are many different types of flow meters. Many of them entail a breakdown of your current compressed air lines by cutting, welding, or dismantling for installation. This will add cost in downtime and maintenance staff. But, not with the EXAIR Digital Flowmeters. In this blog, I will share the features and benefits of the Digital Flowmeters including options for you to start measuring and optimizing your compressed air system in Step 1.

Digital Flowmeter

Overall, it only takes a few minutes to install and start measuring. The installation kit comes with a drill bit and a drill guide to properly locate the two holes on the pipe. The Digital Flowmeter uses a clamp to mount to the pipe and to seal the area around the probes. Once it is powered, the unit is ready to measure the air flow inside the pipe with a large LED display. The display can be customized to show flow readings in three different units; SCFM, M3/hr or M3/min; and, it can display the Daily Usage and Cumulative Usage.

To get started, the EXAIR Digital Flowmeter is a thermal dispersion device that can accurately measure compressed air flows. They use two sensing probes for comparative analysis. One probe is a temperature sensing probe, and the other is a flow-sensing probe. By comparing these, the Digital Flowmeter can measure precisely the mass air flow without needing to be recalibrated. They are a cost-effective, accurate, and simple way to measure compressed air flows.

EXAIR stocks a large volume of Digital Flowmeters to ship same day for U.S. and Canadian customers. We also offer a 30-day unconditional guarantee to try them out. We stock meters for pipe diameters from ½” NPT to 4″ NPT Schedule 40 black pipe. EXAIR can also offers flow meters up to 8″ NPT black pipe; copper pipes with diameters from 3/4″ to 4″, and aluminum pipes with diameters ranging from 40mm to 101mm. If you have another type of piping for your compressed air system, you can give us the material, O.D. or I.D., and wall thickness. We may still be able to get a Digital Flowmeter for you.

For measuring, all the units come standard with a 4 – 20mA analog output. Per your request, we can change this signal to a serial output for RS-485 or Ethernet connections. What more can we offer with the EXAIR Digital Flowmeter? Options. Options upgrade the flow meters to better suit your application. Here is a list below:

EXAIR’s Digital Flowmeter w/ USB Data Logger

USB Data Logger: This option allows for a recording of the flow information. With a software download, you can setup the USB Data Logger to record the flows from once a second (roughly 9 hours of storage) to every 12 hours. After the data points are recorded, you can then download the information into the software to review. Then the information can be uploaded into an Excel program to do further analysis.

Summing Remote: With compressed air pipes running along the ceiling and walls, reading the Digital Flowmeter may be difficult. The Summing Remote has a 50-foot (15 meter) cable to bring the LED display into viewing. The Summing Remote is powered by the Digital Flowmeter, and it can be positioned at eye level, inside managers’ rooms, or around large equipment for monitoring.

Digital Flowmeter w/ Wireless Capability, Gateway, and Drill Guide Kit

Wireless Capability: Our latest Digital Flowmeter now has wireless capabilities. They use a Zigbee® communications to pick up flow readings from other flow meters and the Gateway. The Gateway can detect over 100 Digital Flowmeters in your facility. From the Gateway, the information is transferred through a LAN. You can record and analyze the flow information from each meter on the network with our EXAIR® Logger Software. You can set limits to send warnings when your compressed air system is using too much or too little of compressed air. This technology makes it very easy for measuring your compressed air system in the entire facility without having to be there.

Hot Tap DFM

Hot Tap Digital Flowmeter: This option is a great way to install a Digital Flowmeter to the pipe without shutting down the compressed air line. We offer this option for 2″ and larger flow meters for steel and copper pipes. It gives a quick and easy way to attach if you have a 24-hour operation or a critical process that needs to continue to run.

Pressure Sensing Port

Pressure Sensing Digital Flowmeter: If you would like to know the compressed air flow and the air pressure, this option will be able to do this. They are available with the Digital Flowmeters for steel and copper pipes that are 2″ and larger, and for the aluminum piping that is 50mm and larger. This option can display pressure units in either PSI or Bar right on the same LED display that shows the flow readings.

When you need to analyze your pneumatic components, flow is an important point in diagnosing the overall “health” of your compressed air system. The EXAIR Digital Flowmeter can give you that important data point. With optimization, you can cut your energy consumption, improve pneumatic efficiencies, and save yourself money. This blog is an overview of Step 1 of six steps. You may have more questions; and, that is great! You can find them in other EXAIR blogs, or you can contact an Application Engineer at EXAIR.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Replace Homemade Blowoffs with Engineered Solutions for BIG savings

Saving money on compressed air is as simple as replacing current, inefficient products with engineered products which are made to be efficient and OSHA safe (for noise and dead end pressure).

Sections of pipe with drilled holes along the length are a common find in industrial environments as they are made of relatively inexpensive materials and simple to make.  Where the cost begins to add up is on the operation side as these types of homemade blow-offs waste a ton of compressed air offsetting their cheap purchase price and making them expensive to operate.

For comparison, lets look at a 12″ section of pipe with (23) 1/16″ diameter drilled holes. Referencing the table below, each hole will flow 3.8 SCFM @ 80 PSIG for a total of 87.4 SCFM.

With an average cost of $ 0.25 per every 1,000 SCF used (based on $ 0.08/kWh), it would cost $ 1.31 to operate this blowoff for 1 hour. (87.4 SCFM x 60 minutes x $ 0.25 / 1,000)

Now let’s run the numbers as if we look at replacing the drilled pipe with our 12″ Super Air Knife. A 12″ Super Air Knife will consume 34.8 SCFM (2.9 SCFM per inch) when operated at 80 PSIG. Using the same figure of $ 0.25 per every 1,000 SCF used, it would cost $ 0.52 / hr. to operate this knife. (34.8 SCFM x 60 minutes x $ 0.25 / 1,000)

Just to better lay these out, let’s review the operating costs.

Drilled pipe operating costs:
$ 1.31 per hour
$ 10.48 per day (8 hours)

12″ Super Air Knife costs:
$ 0.52 per hour
$ 4.16 per day (8 hours)

Cost Savings:
$ 10.48 per day (drilled pipe) –  $ 4.16 per day (Super Air Knife) = $ 6.32 savings per day

Over the course of one year, one shift per day, and 250 working days per year – the Super Air Knife saves $1580 annually. Obviously, that will increase if you are running more than one shift.

While the drilled pipes always appear to be a quick an easy solution that carry low cost of ownership, remember to look at the total cost of operation. This is where engineered solutions surpass their drilled hole alternative.

If you would like to discuss drilled pipes within your facility or want to see how an engineered solutions may fit the needs you see, contact an application engineer today.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

EXAIR Mini Cooler™: Overview 

EXAIR Mini Coolers

EXAIR offers a line of spot cooling devices to blow cold air to remove heat.  Heat can cause premature failures and shortened tool life.  We use the Vortex Tube phenomenon to make very cold air without any moving parts or Freon.  They only need compressed air as the “engine” to spin the air streams into two parts; hot air and cold air.  They are maintenance free and can supply cold air down to a temperature of -50oF (-46oC).  EXAIR “dresses up” a Vortex Tube to make a more functional device for spot cooling.  In this blog, I will cover the smallest of our spot coolers; the Mini Cooler™.   

The EXAIR Mini Cooler was designed for tight areas to cool small objects.  It has a cooling capacity of 550 BTU/hr (139Kcal/hr).  It only uses 8 SCFM (227 SLPM) at 100 PSIG (6.9 bar).  The system will come with a manual drain Filter Separator with mounting bracket, a Swivel Magnetic Base with 100 lb. (45.5Kg) pull magnet, and a flexible hose kit.  We offer two options for the flexible hose kit; a Single Point Hose Kit, model 3808, and a Dual Point Hose Kit, model 3308.  The Single Point Hose Kit will give you one flexible outlet to easily position the cold air stream near the target point.  It will also include a round point tip and a flat-fan tip.  The Dual Point Hose Kit adds a split to have two separate cold outlets; still including the round and flat-fan tips.  With these features, the Mini Cooler is easy to mount, use, and move for optimal cooling and blowing. 

Model 3308

When using the Mini Cooler, the flexible cold outlets can easily bend around fixtures, spindles, and welding horns.  The swivel magnetic base gives extra adjustment at the base of the cooler to aid in “hard to reach” places.   To further the benefits of the cooler, the operating pressure can be changed to lower or raise the cooling capacity to meet your demands.  At 100 PSIG (6.9 bar), the cold air flow can reach a temperature as low as 20oF (-7oC).

Some applications for the Mini Cooler would include small diameter milling and drilling where the cold air can keep the tool cool and remove the chips.  It can also be used for soldering, industrial sewing, ultrasonic welding, or even small punching applications to list a few.  With the dual point hose kit, it is ideal for targeting two sides of a cutter, aiming at multiple blades where material is being slit, or cooling multiple ultrasonic points for faster cycle times.

If you believe that you have an application where spot cooling could increase production rates and/or extend tool life, you can contact an Application Engineer at EXAIR.  We can offer the Mini Cooler for smaller targets; or, larger versions like the Adjustable Spot Cooler and Cold Gun Aircoolant System™.  We are looking forward to hearing from you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb