EXAIR Super Air Wipe Greatly Increases Productivity & Saves Money!

Late last year I received a call from a customer that was using EXAIR Super Air Knives to create an air curtain that protected the lens on their Robotic Welders from weld spatter.  The EXAIR Super Air Knife accomplished this by virtue of its design to deliver a uniform sheet of laminar air flow across its entire length.  While this greatly improved the life of the welder lens and reduced maintenance time, further improvements were needed.

The event that triggered this was the challenge they received from their customer (one of the big 3 automobile manufacturers) to increase their output of welded seat frames by 50%.  While the EXAIR Super Air Knives greatly reduced lens maintenance the consensus was further improvements would facilitate the goal of increasing output 50% .

Super Air Knife laser application
Using the Super Air Knife to protect the welding lens

 

This started the discussion on the possibility of using the EXAIR Super Air Wipe, even though it is primarily used for drying/cleaning of long continuous flow products its airflow pattern (see illustration below) was able to direct the weld splatter down and away from the lens.  This ultimately proved to be more effective at protecting the lens than the laminar air curtain provided by the EXAIR Super Air Knife.

Air Wipe - how it works
Air Wipe – How it work

The installation of the EXAIR Super Air Wipes started on 12/16/2017 and was completed on 12/23/2017. The original production rate was 480 pair of SUV rear seat frames per day running 3 shifts 24/6.

Laser Above SAW Front
Robotic Welder fitted with EXAIR Super Air Wipe

After the Installation of the EXAIR Super Air Wipes, they had improved the production rate to 750 pair/day running 3 shifts 24/5 days per week.  That equates to a productivity increase of 156%, far exceeding the goal of 50%!

Before using the EXAIR Super Air Wipe their maintenance department would clean the Cover Slide on the Laser Welding Head – 3 times per day at approximately 20 min x 3x daily x 6 days / week 6 hours / week.  “With the EXAIR Super Air Wipe we found that we can weld for 10 days before cleaning the Cover Slide” says the customer.

Each Cover Slide costs $195 and those were being replaced weekly, it was a pleasant surprise to find out that only a small amount of dust collects on the Cover Slide now, which is cleaned off in less than a minute

In 10 weeks of Operation they have not replaced a single  Slide since the EXAIR Super Air Wipe has nearly eliminated pitting from the weld spatter.

Also, Cleaning of the Slides is now performed on Saturday’s at the leisure of the maintenance team and not under the strain of production time. The Labor Rate for Maintenance is $75/hour x 6 hours/week = $450 X 50 weeks/year $22,500 plus the cost of the replacement windows at $195 each x 25 weeks = $4,875 savings per year.  Total savings after implementing the EXAIR Super Air Wipe = $27,375 per welding machine!

With the maintenance & replacement cost savings alone it is an easy calculation to make on the purchase of the EXAIR Super Air Wipe’s. That figure is not counting the productivity increase of 156% which allowed them to meet their customers delivery schedule and reduce overtime!

If you would like to discuss increasing the efficiency of your compressed air usage, quieter compressed air products and/or any EXAIR product,  I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Cool Small Parts and Tools, with Clean, Cold Air

Do you need a proven way to reduce downtime and increase productivity on a variety of operations involving small parts where heat is a problem?  EXAIR‘s Mini Cooler produces a stream of 20°F (-7°C) cold air to prevent heat build up and blow away chips and debris.

Especially effective on high speed operations, the Mini Cooler helps to prevent burning, melting, and heat related breakage, and while doing so, at a quiet 76 dBA sound level. Better yet, all done with no moving parts to wear out.

minicooler_appli400
Mini Cooler Cooling a Small Mill Operation

Some popular applications for the Mini Cooler are – small tool cooling, needle cooling, blade cooling, and lens grinding.

There are several advantages to take note of – low cost, increased production rates, better tolerances, and quiet and compact.

minicoolerWFAM_500

The Mini Cooler Systems are available with One or Two Cold Outlets, and also include a 1″ wide Flare Nozzle Tip, and a Manual Drain Air Filter to clean the air, ensuring long, trouble free operation.

Using just 8 SCFM of 100 PSIG compressed air, the Mini Cooler will not tax your compressed air system.  Its small size allows it to fit in areas where larger systems could not fit.  The powerful magnetic base sticks to any ferrous surface and and provides up to 100 pounds of pull force.

If you have any questions about the Mini Cooler, the Adjustable Spot Cooler, Cold Gun or any EXAIR compressed air product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Cabinet Cooler Systems Overview

 

My colleague, Brian Bergmann wrote a blog on how the EXAIR Cabinet Coolers work, “Cabinet Coolers 101”.  I want to extend that conversation about how EXAIR Cabinet Coolers can better benefit you and your equipment.

With the hot summer months upon us, elevated temperatures can cause shutdowns and interference with electrical systems.  For every 10 deg. C rise above the operational temperature, the life of an electrical component is cut in half.  With freon based coolers, higher ambient conditions make them less effective; and opening the electrical panel to have a fan blow inside creates a dangerous electrical hazard as well as blowing hot, humid, dirty air inside the cabinet.  To reduce loss in production and premature equipment failures, it is important to keep the electrical mechanisms cool.  The EXAIR Cabinet Coolers are designed to do just that.

How does the Cabinet Cooler work? 

EXAIR Cabinet Coolers are powered by a Vortex Tube which only uses compressed air to generate cold air.  They do not have any moving parts, freon to leak, or refrigerant compressors to fail.  These simple, but effective, cooling devices can be used in the toughest of environments.  With the Vortex Tube as the “engine, the reliability of the EXAIR Cabinet Cooler is unmatched and makes it an easy choice for cooling electrical panels.

How the EXAIR Cabinet Cooler System Works

What NEMA ratings does EXAIR offer? 

To match the same integrity as your electrical panel, EXAIR offers three different types of NEMA ratings that are UL listed and CE compliant.  NEMA 12 is dust and oil tight, and can be related to the IEC standard, IP54.  NEMA 4 is dust and oil tight as well as splash resistant for indoor and outdoor use.  The NEMA 4X is the same as the NEMA 4 except it is made of stainless steel for corrosive areas and aggressive wash-down environments.  Both the NEMA 4 and 4x corresponds to an IP66 rating.  EXAIR Cabinet Coolers are easily installed and can match your electrical panel to keep the electrical components safe inside.

What size Cabinet Cooler do I need? 

EXAIR makes it easy to get the proper cooling with the Cabinet Cooler Sizing Guide.  This sheet goes over the important information to determine the external and internal heat loads.  It also indicates the proper NEMA type and electrical requirements for easy installation. The cooling power ranges from 275 BTU/hr to 5,600 BTU/hr, and with the filled-out form, we can make sure that the correct model is used.

What types of systems are offered? 

EXAIR offers a continuous operating system and a thermostat-controlled system.  The continuous operating system includes the selected Cabinet Cooler, a filter, and a cold air distribution kit.  The system will continuously cool until it is manually or automatically turned off.

The thermostat-controlled system is the most efficient way to operate a Cabinet Cooler.  This system comes with the selected Cabinet Cooler, filter, cold air distribution kit, a thermostat and an electrical solenoid valve.  The system is designed to operate only when cooling is needed.  The thermostat controls a solenoid valve, and it is preset at 95°F (35°C).  The thermostat can be easily adjusted to match other desired temperatures.  The solenoid valves come in three different voltages, 120Vac, 240Vac, and 24Vdc (which ever voltage is easily accessible).  With the thermostat-controlled system, you do not have worry about the system operating during off-peak conditions or cooler seasons.

What other options does EXAIR offer with the Cabinet Cooler Systems? 

For better temperature control, EXAIR can replace the standard thermostat and solenoid valve with the ETC, or Electronic Temperature Control.  It is a digital temperature controller with a LED screen for precision monitoring and adjusting.  The controller has easy-to-use buttons to raise or lower the desired internal cabinet temperature.  Once set, the ETC will hold the temperature to +/- 1 deg. F (+/- 0.5 deg. C).  The LED displays the internal temperature for continuous monitoring.  The ETC comes complete with the controller and a solenoid valve in two different voltages, 120Vac and 240Vac.  The ETC is a great option for real-time accurate measurements for your panel cooling.

EXAIR NEMA 4X 316SS Cabinet Cooler System with Electronic Temperature Control installed on control panel in a pharmaceutical plant.

Another option that EXAIR offers is the Side Mount Kit.  They are used to mount the Cabinet Coolers on the side of the electrical panel.  They are manufactured to match the NEMA rating of the Cabinet Cooler.  If you have limited space, don’t worry.  The Side Mount Kits gives you more areas to mount the Cabinet Cooler to your electrical panel.

What about harsh environments? 

With elevated ambient temperatures like near ovens, the high temperature version would be your option.  The HT Cabinet Coolers work in temperatures from 125 deg. F to 200 deg. F (52 deg. C to 93 deg. C respectively).  With refrigerant coolers, the elevated temperatures make it very difficult to cool effectively.  But with the EXAIR HT Cabinet Coolers, the high temperature will not affect the ability to blow cool air.

If the environment is extremely dirty with lint, fibers, debris, etc., EXAIR offers a NHP, or Non-Hazardous Purge, version. The solenoid valve is designed to allow 1 SCFM of compressed air into the panel to keep a slight positive pressure.  With the NHP Cabinet Coolers, the ingress of any fine particles into your electrical panel are eliminated.

For food and beverage, pharmaceutical, and corrosive type of applications, EXAIR can offer NEMA 4X Cabinet Coolers made from 316SS material.  With the high corrosion resistance, the 316SS Cabinet Coolers will continue to operate without degrading in tough environments.

Electrical shutdowns are expensive and annoying.  If you have interruptions from high internal temperatures, EXAIR Cabinet Coolers are a great solution.  They can be installed quickly and easily.  With no moving parts or costly preventative maintenance needed, they can operate for decades in keeping your electronics cool.  If you have any questions about Cabinet Coolers or the Sizing Guide, you can contact an Application Engineer at EXAIR.  We will be happy to help.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Super Air Knife Coupling Kit Helps Customer Save Money and Increase Productivity!

I was recently contacted by a manufacturer of specialty food products that was looking to increase productivity on one of their packaging lines. In order to do so, they needed a longer Super Air Knife.

SS SAK cheese.jpg cropped
Model 110012SS-316 Super Air Knife

They manufacture a variety of different products, but this application was involving small snack-size blocks of cheese. They’re placed into individual plastic containers and before they seal the packaging any residual particles must be blown off or it will affect the seal. Any residual particles of cheese around the container would allow air to come into contact with the product and affect shelf-life.

In the current setup, they were using EXAIR’s Model 110012SS-316 a 12” 316 grade Stainless Steel Super Air Knife and the Model 9060 Universal Mounting System. They wanted to add in an additional two rows of cheese to help increase throughput. To do so, he needed an overall width of 18”. We do have an 18” available from stock, but rather than having a spare 12” model lying around he wanted to try and utilize what he had without having to purchase an entirely new knife.

uakmb
Model 9060 Universal Mounting System

Fortunately, EXAIR’s Super Air Knives can be coupled together to create a wide variety of different lengths. From stock, the Super Air Knife is available from 3”-108”. With the help of a Super Air Knife Coupling kit, we can achieve much longer lengths. In this case, although we did have an 18” knife available, we could also couple the existing 110012SS-316 (12”) with our Model 110006SS-316 (6”). This option was a bit cheaper than going with a new knife, and still allowed them to utilize the 12” that they already had.

gh_Super Air Knife Coupling Kit 750x696
Coupling Kit for Aluminum Super Air Knives

While this isn’t the typical place we’d recommend a coupling kit, it was an option that allowed the customer to save a bit of money but still get the same effect that they’d achieve with the 18” single piece knife. We also manufacture a wide variety of custom knives per customer specifications. If you’ve got an odd application that you don’t think is best served by a stock offering, give us a call. An Application Engineer will be happy to take a look at your application and help recommend the most suitable product.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

What’s The Big Deal About Clean Air?

Compressed air isn’t called manufacturing’s “Fourth Utility” (the first three being electricity, water, and natural gas) for nothing. Pneumatic tools are popular because they’re often so much lighter than their electric counterparts. Compressed air can be stored in receiver tanks for use when other power supplies are unavailable or not feasible. Many compressed air operated products can be made to withstand environmental factors (high/low temperature, corrosive elements, atmospheric dust, oil, other contaminants, etc.,) that would make electric devices very expensive, unwieldy, or impractical.

One of the most valuable considerations, though, is that your compressed air system is, by and large, under your control.  The type and capacity of your air compressor can be determined by your specific operational needs.  The header pressure in your supply lines is based on the applications that your air-operated devices are used for.  And the performance & lifespan of every single component in your compressed air system is determined by the care you take in maintaining it.

I covered the importance of compressed air system maintenance in a blog a while back…today, I want to focus on clean air.  And, like the title (hopefully) makes you think, it’s a REALLY big deal.  Consider the effects of the following:

Debris: solid particulates can enter your air system through the compressor intake, during maintenance, or if lines are undone and remade.  If you have moisture in your air (more on that in a minute,) that can promote corrosion inside your pipes, and rust can flake off in there.  Almost all of your air operated products have moving parts, tight passages, or both…debris is just plain bad for them.  And if you use air for blow off (cleaning, drying, etc.,) keep in mind that anything in your compressed air system will almost certainly get on your product.

Your compressed air system may be equipped with a main filter at the compressor discharge.  This is fine, but since there is indeed potential for downstream ingress (as mentioned above,) point-of-use filtration is good engineering practice.  EXAIR recommends particulate filtration to 5 microns for most of our products.

Water: moisture is almost always a product of condensation, but it can also be introduced through faulty maintenance, or by failure of the compressor’s drying or cooling systems.  Any way it happens, it’s also easy to combat with point-of-use filtration.

EXAIR includes an Automatic Drain Filter Separator in our product kits to address both of these concerns.  A particulate filter element traps solids, and a centrifugal element “spins” any moisture out, collecting it in the bowl, which is periodically drained (automatically, as the name implies) by a float.

Point of use filtration is key to the performance of your compressed air products, and their effectiveness. Regardless of your application, EXAIR has Filter Separators to meet most any need.

Oil: many pneumatic tools require oil for proper operation, so, instead of removing it, there’s going to be a dedicated lubricator, putting oil in the air on purpose.  Optimally, this will be as close to the tool as possible, because not all of your compressed air loads need oil…especially your blow offs.  If, however, a blow off device is installed downstream of a lubricator (perhaps due to convenience or necessity,) you’ll want to do something about that oil. Remember, anything in your system will get blown onto your product.

If this is the case, or you just want to have the cleanest air possible (keep in mind there is no downside to that,) consider an EXAIR Oil Removal Filter.  They come in a range of capacities, up to 310 SCFM (8,773 SLPM,) and the coalescing element also offers additional particulate filtration to 0.03 microns.

In closing, here’s a video that shows you, up close and personal, the difference that proper filtration can make:

If you’d like to discuss or debate (spoiler alert: I’ll win) the importance of clean air, and how EXAIR can help, give me a call.

Russ Bowman
Application Engineer
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Turn The Pressure Down & Save Money

In the past your typical industrial air compressor was rated to run at 100 psi and it was not often that this pressure was exceeded.  Lately with modern advances pressures have slowly crept up and have surpassed this threshold.  Unfortunately this has proven costly to the industrial user of compressed air.

To clarify this point, if a compressed air system is set to maintain 102 psi it will cost the plant 1% more in electric costs than if the system ran at 100 psi.  Also noteworthy is that unregulated air demands consume about 1% more flow for every psi of additional pressure.

So why is the air pressure getting so high and what can you do about it?  Here are some possible causes and solutions:

Devices that do require more than 100 psi:  It may not be the pneumatic device at all. If these devices are connected with restrictive fittings or there are excessive leaks in the system this can cause up to a 30 psi increase in line pressure just to make up for the poor piping. If this can be corrected it is possible that the pressure can be reduced.

EXAIR offers the Ultrasonic Leak Detector to facilitate tracking down hard to find system leaks and a wide variety of Air KnivesAir Amplifiers, Super Air Wipes, Air Nozzles, Line Vacs, Vacuum Generators and all of them are engineered to provide peak performance at 80 psi and make efficient use of compressed air. Though it is not uncommon for these products to provide a solution at much less pressure.

9061
EXAIR 9061, Ultrasonic Leak Detector

Applications that are believed to be high pressure:  Plant workers sometimes think that a higher air pressure is required than actually necessary.  This can be caused by a lack of training or perhaps the trainers are simply repeating what they have been taught in error.  It is good practice to review all locations that are using a higher pressure to determine if it is really necessary.

Loss due to undersize pipes:  If your plants compressed air supply lines are undersized for the volume demand, this can cause a significant restriction and raise the line pressure.  The EXAIR Digital Flow Meter can assist in recording how much demand is for a given point in time which will clarify usage.

9093
EXAIR Digital Flow Meter

 

Filter/Dryer restrictions:  If the Dryer or Filter/Separators are dirty and/or undersized the compressor operating pressure is typically raised to overcome these restrictions.  EXAIR has six sizes of Filter/Separators to ensure they are properly sized for the SCFM required by the devices that are connected to them.  Five of the models feature an automatic drain system and of course we carry the replacement filter elements and rebuild kits to keep them in top operating condition.

Temporary demands: There may be occasional peak compressed air demands in the plant that may be caused by a different or special compressed air process or machine. If the demand is greater than the supply, the pressure may be pulled down to unacceptably low levels.  In an attempt to make up for the increased demand a plant may raise the operating pressures.  The best way to cope with temporary demands is to install a receiver tank that stores compressed air that can be released when the demand calls for it.

receiver_tank
EXAIR 9500-60, 60 Gallon Receiver Tank

Factory default settings:  It is common for compressor manufacturers to set the air pressure at or very near the maximum pressure rating for that compressor.  There is no reason for this other than to verify that the air compressor will perform at its rated maximum pressure.  To save on air and maintenance costs the compressor should be set only as high as the maximum pressure for approved uses in the facility.

In the compressed air industry, EXAIR provides tools and products with quick payback times.

If you would like to discuss increasing the efficiency of your compressed air usage, quieter compressed air products and/or any EXAIR product,  I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Super Air Knife with a Plumbing Kit Removes Gypsum from a Conveyor Belt

Plumbing Kits

A gypsum facility was having issues in losing powder from the tailings in their conveying system.  The conveyor moved gypsum from their processing plant to an outside silo bin location for loading and transportation.  The conveyor that they used was 60” wide.  As the conveyor went around the end to dump the gypsum powder, some of the material would stick to the belt and collect on the floor underneath.  Depending on production rates, they would have to stop the operation to clean up the floor which added additional hours for custodial work.  The customer sent a picture of the problem and wondered if EXAIR could help them with this application.

The facility did an annual cost projection to determine the loss of money from the gypsum material collecting under the conveyor.  The custodial cost to clean up the excess powder was roughly $45,000/year.  The unscheduled downtime was estimated at 115 hours per year.  (They did not share the loss of dollars in production to EXAIR.)  But it was large enough that they needed a solution from EXAIR.  (The photo below is similar to the same application as written by Lee Evans: “EXAIR Super Air Knives Improve Process in an Aluminum Rodding Shop“.)

Powder collecting under conveyor

I suggested a model 110260PKI Super Air Knife Kit for this application.  The Super Air Knife was 60” in length to cover the conveyor belt.  The kit included a filter, a regulator, and a shim set to “dial” in the minimum amount of force to remove the material.  This gives the customer the most flexibility when using an EXAIR Super Air Knife.  The “PKI” suffix at the end of the model number indicates our Plumbing Kit.  This kit which is Installed on the Super Air Knife allows for ease of installation to compressed air connections and it also allows for the proper airflow to get a consistent blow-off across the entire length of the Super Air Knife.

At EXAIR, we pride ourselves in energy efficiency.  Compressed air is expensive to make, so why not use it as efficiently as you can?  The Super Air Knife has a 40:1 amplification ratio which allows 40 parts of ambient “free” air for every 1 part of compressed air.  And, with the “dirty” environment at the gypsum facility, the Super Air Knife would not be affected as they do not require a motor that can fail or a maintenance program to perform.  After installing the model 110260PKI, the gypsum powder was no longer collecting on the floor underneath.  If we look at the cost of removing the hourly rate of the custodian, the Return on Investment, ROI, was only 27 days (and this did not include the increase in production rates).

Spillage is wasteful, costly, and time consuming to cleanup.  If you have excess waste from your conveying system, EXAIR will have the product to help you.  For the gypsum facility above, the Super Air Knife Kit made it possible to increase production efficiencies with a short ROI.  You can contact an Application Engineer to review your application and see if we can improve your conveying operation.

John Ball

Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb