Issues and Problems with Pressure Drop


Super Air Knife Install Sheet

Pressure drop comes in different forms, and it causes inefficiencies within your pneumatic system.  EXAIR writes statements in the installation manuals to help find the correct pipe sizes to supply the different products.  (Reference Super Air Knife Installation Manual above).   But there are other areas that can affect the performance.  These can be fittings, tubing, valves, and accessories.  In this blog, I will cover some pitfalls that can minimize the potential of your EXAIR products.

Pressure drop by definition is a difference or loss in pressure.  A properly sized Filter Separator will typically have a pressure drop of 5 PSID (0.3 bar) at the rated conditions.  So, if you start with 100 PSIG (6.9 bar), the air pressure after the filter separator will be 95 PSIG (6.6 bar).  But what happens when a filter separator is undersized or too small?  The pressure drop will be much higher.  So, if the pressure drop is 30 PSID (2 bar), then the downstream air pressure will only be 70 PSIG (4.8 bar).  At that pressure, you may not be able to get the performance that is required to do the job.

The first thing in determining these potential issues is what I like to call forensics.  If you can install a pressure gage at the inlet of any EXAIR product, then you can deduce if a potential problem is within your setup.   For example, if the Pressure Regulator is at 100 PSIG (6.9 bar), and the pressure gauge at the inlet is reading only 60 PSIG (4.1 bar), then there is a pressure drop of 40 PSID (2.8 bar) between these two points.  You can look in this area for the problem or problems.  If the gauge on the Pressure Regulator goes down as well when you are operating, then the problem area is upstream of the Pressure Regulator.  This can be from the pipe size or the air compressor.

The most common issues are fittings and tubing.  With fittings, small openings may not allow enough air to pass through.  Above is a photo of some typical fittings.  You notice that the right side of the chart has large enough openings to decrease pressure drop.  In some instances, quick connect fittings are commonly used to easily connect or disconnect pneumatic devices; but if you use too small or too many of these fittings, they can cause a large pressure drop.

The other problem is with the inner diameter of tubing, hoses, or pipes that are not properly sized.  Russ Bowman, a colleague, created a video showing the issues with improperly sized plumbing.  It is a very interesting video that shows the effect on a Super Air Knife.

If you want to get the most from your EXAIR products, you will need to reduce the amount of pressure drop in your system.  Pressure drop is wasted energy and can affect your pneumatic system.  You can follow my recommendations above.  Or if you would like to discuss your setup with an Application Engineer, we will be happy to assist.

John Ball
Application Engineer

Twitter: @EXAIR_jb

How to Calculate and Avoid Compressed Air Pressure Drop in Systems

EXAIR has been manufacturing Intelligent Compressed Air Products since 1983.  They are engineered with the highest of quality, efficiency, safety, and effectiveness in mind.  Since compressed air is the source for operation, the limitations can be defined by its supply.  With EXAIR products and pneumatic equipment, you will need a way to transfer the compressed air from the air compressor.  There are three main ways; pipes, hoses and tubes.  In this blog, I will compare the difference between compressed air hoses and compressed air tubes.

The basic difference between a compressed air hose and a compressed air tube is the way the diameter is defined.    A hose is measured by the inner diameter while a tube is measured by the outer diameter.  As an example, a 3/8” compressed air hose has an inner diameter of 3/8”.  While a 3/8” compressed air tube has an outer diameter that measures 3/8”.  Thus, for the same dimensional reference, the inner diameter for the tube will be smaller than the hose.

Why do I bring this up?  Pressure drop…  Pressure Drop is a waste of energy, and it reduces the ability of your compressed air system to do work.  To reduce waste, we need to reduce pressure drop.  If we look at the equation for pressure drop, DP, we can find the factors that play an important role.  Equation 1 shows a reference equation for pressure drop.

Equation 1:

DP = Sx * f * Q1.85 * L / (ID5 * P)

DP – Pressure Drop

Sx – Scalar value

f – friction factor

Q – Flow at standard conditions

L – Length of pipe

ID – Inside Diameter

P – Absolute Pressure


From Equation 1, differential pressure is controlled by the friction of the wall surface, the flow of compressed air, the length of the pipe, the diameter of the pipe, and the inlet pressure.  As you can see, the pressure drop, DP, is inversely affected by the inner diameter to the fifth power.  So, if the inner diameter of the pipe is twice as small, the pressure drop will increase by 25, or 32 times.

Let’s revisit the 3/8” hose and 3/8” tube.  The 3/8” hose has an inner diameter of 0.375”, and the 3/8” tube has an inner diameter of 0.25”.  In keeping the same variables except for the diameter, we can make a pressure drop comparison.  In Equation 2, I will use DPt and DPh for the pressure drop within the tube and hose respectively.

Equation 2:

DPt / DPh = (Dh)5 / (Dt)5

DPt – Pressure drop of tube

DPh – Pressure Drop of hose

Dh – Inner Diameter of hose

Dt – Inner Diameter of tube

Thus, DPt / DPh = (0.375”)5 / (0.25”)5 = 7.6

As you can see, by using a 3/8” tube in the process instead of the 3/8” hose, the pressure drop will be 7.6 times higher.

Diameters: 3/8″ Pipe vs. 3/8″ tube

At EXAIR, we want to make sure that our customers are able to get the most from our products.  To do this, we need to properly size the compressed air lines.  Within our installation sheets for our Super Air Knives, we recommend the infeed pipe sizes for each air knife at different lengths.

There is also an excerpt about replacing schedule 40 pipe with a compressed air hose.  We state; “If compressed air hose is used, always go one size larger than the recommended pipe size due to the smaller I.D. of hose”.  Here is the reason.  The 1/4” NPT Schedule 40 pipe has an inner diameter of 0.364” (9.2mm).  Since the 3/8” compressed air hose has an inner diameter of 0.375” (9.5mm), the diameter will not create any additional pressure drop.  Some industrial facilities like to use compressed air tubing instead of hoses.  This is fine as long as the inner diameters match appropriately with the recommended pipe in the installation sheets.  Then you can reduce any waste from pressure drop and get the most from the EXAIR products.

With the diameter being such a significant role in creating pressure drop, it is very important to understand the type of connections to your pneumatic devices; i.e. hoses, pipes, or tubes.  In most cases, this is the reason for pneumatic products to underperform, as well as wasting energy within your compressed air system.  If you would like to discuss further the ways to save energy and reduce pressure drop, an Application Engineer at EXAIR will be happy to assist you.


John Ball
Application Engineer
Twitter: @EXAIR_jb

The Effect of Back Pressure on a Vortex Tube Part 2, Calculating Btu/Hr.

My previous blog post was about how Vortex Tubes react when there is back pressure due to a restriction on either the hot or cold discharge of the Vortex Tube.  In it I mentioned that there is a formula to calculate what the cooling capacity (Btu/Hr) will be if there is no way to avoid operating the Vortex Tube without back pressure on the discharge. That is the calculation focus of this blog – calculating Btu/hr of a Vortex Tube with back pressure.

To continue with the same example, the calculations from the previous blog are shown below.  Last time the example Vortex Tube was operating at 100 psig inlet pressure, 50% cold fraction, and 10 psi of back pressure. We will need some additional information to determine the Btu/Hr capacity. The additional information needed is the temperature of the supplied compressed air as well as the ambient air temperature desired to maintain.  For the example the inlet compressed air will be 70°F and desired ambient air temperature to maintain will be 90°F.

(100 psig + 14.7 psia) / (10 psig + 14.7 psia) = X / 14.7 psia
4.6437 = X / 14.7
X= 14.7 * 4.6437
X = 68.2628
(Values have been rounded for display purposes)

The calculation above gives the compensated operating pressure (X = 68.2628) which will be needed for the BTU/hr calculation. The rated air consumption value of the Vortex Tube will also need to be known.  A 30 SCFM rated generator will be used for this example, the normal BTU capacity of a Vortex Tube with a 30 SCFM generator is 2,000 BTU/hr.

First, determine the new consumption rate by establishing a ratio of the compensated pressure (68.2628 psi) against the rated pressure (100 psi) at absolute conditions (14.7 psia).

(68.2628 PSIG + 14.7 (atmospheric pressure)) / (100 PSIG (rated pressure) + 14.7) = .7233
.7233 x 30 SCFM  = 21.7 SCFM Input 

Second, the volumetric flow of cold air at the previously mentioned cold fraction (50%) will be calculated.  To do this multiply the cold fraction setting (50%) of the Vortex Tube by the compensated input consumption (21.7 SCFM) of the Vortex Tube.

50% cold fraction x 21.7 SCFM input = 10.85 SCFM of cold air flow

Third, the temperature of air that will be produced by the Vortex Tube will need to be calculated.  For this consult the Vortex Tube performance chart which is shown below. To simplify the example the compensated operating pressure (68.2628 psi) will be rounded to 70 psig and to obtain the 70 psig value the mean between 80 psig and 60 psig performance from the chart will be used.

Cold Fraction
EXAIR Vortex Tube Performance Chart

For the example: A 70 psig inlet pressure at 50% cold fraction will produce approximately an 88°F drop.
Fourth, subtract the temperature drop (88°F) from the temperature of the supplied compressed air temperature (70°F).

70°F Supply air – 88°F drop = -18°F Output Air Temperature

Fifth,  determine the difference between the temperature of the air being produced by the Vortex Tube (-18°F) and the ambient air temperature that is desired (90°F).

90°F ambient – -18°F air generated = 108°F difference.

The sixth and final step in the calculation is to apply the answers obtained above into a refrigeration formula to calculate BTU/hr.

1.0746 (BTU/hr. constant for air) x 10.85 SCFM of cold air flow x 108°F ΔT = 1,259 BTU/hr.

In summary, if a 2,000 BTU/hr. Vortex tube is operated at 100 psig inlet pressure, 50% cold fraction, 70°F inlet air to maintain a 90°F ambient condition with 10 psi of back pressure on the outlets of the Vortex Tube the cooling capacity will be de-rated to 1,259 BTU/hr.  That is a 37% reduction in performance.  If a back pressure cannot be avoided and the cooling capacity needed is known then it is possible to compensate and ensure the cooling capacity can still be achieved.  The ideal scenario for a Vortex Tube to remain at optimal performance is to operate with no back pressure on the cold or hot outlet.

Brian Farno
Application Engineer Manager