Super Air Wipe Provides Long-Lasting Solution for Extrusion Blowoff Application

 

The Super Air Wipe has no moving parts to wear out requiring little to no maintenance when supplied with clean, dry compressed air. I recently spoke with a maintenance manager who worked for a company that had been using the same unit for over 7 years. In this application, the Super Air Wipe was used to remove a light coating of oil from the exterior of extruded shapes. Despite showing some obvious signs of wear and tear (and perhaps a little bit of residual oil from the environment), it was still serving the needs of the application as-is.

It may be dirty, but it is still working to remove a light coating of oil from an extrusion!

The Super Air Wipe is available in aluminum construction in sizes ranging from 3/8” – 11” in diameters. All Super Air Wipes comes with stainless steel hardware and stainless steel shims. Sizes up to 4” include a brass tee that supplies one half of the Super Air Wipe while a stainless steel wire braided hose supplies the other side. Sizes over 4” should be piped directly to each ¼ NPT compressed air inlet. In addition to aluminum construction, the Super Air Wipe is also available in 303 stainless steel for corrosive or high temperature applications. The Stainless Steel Super Air Wipe can withstand temperatures up to 800°F and is available in sizes from ½”-4” from stock.

Much like the Super Air Knife, the Super Air Wipe has ¼-20 tapped holes along the downstream side that can be used for mounting. Smaller Super Air Wipes can be supported by rigid compressed air pipe that is used to supply the air into the product. The Super Air Wipe is also infinitely adjustable through the use of shim sets or a pressure regulator. Kits will include the Super Air Wipe, shim set to make gross adjustments to the airflow, an auto-drain filter to keep the air clean and dry, and a pressure regulator. By adjusting the input supply pressure to the Super Air Wipe, you regulate both the force and flow that is projected onto the target material. Increasing the input supply pressure will increase both the force and flow from the Super Air Wipe.

If you’re processing any type of hose, wire, or extruded shapes that could benefit from installing a Super Air Wipe give us a call. With all sizes shipping from stock on an order received by 2:00 pm ET we can have one to you as early as tomorrow!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Keep Your Pneumatics “Healthy” and “Running Like a Brand New Car”

Compressed air systems are used in facilities to operate pneumatic systems, and these systems are vital for industries.  So, it is important to keep them running.  The system can be segregated into three different sections; the supply side, the demand side, and the distribution system.  I like to represent these sections as parts of a car.  The supply side will be the engine; the distribution system will be the transmission; and, the demand side will be the tires.  I will go through each section to help give tips on how to improve the “health” of your pneumatic system.

From the supply side, it will include the air compressor, after-cooler, dryer, and receiver tank that produce and treat the compressed air.  They are generally found in a compressor room somewhere in the corner of the plant.  The air compressor, like the engine of your car, produces the pneumatic power for your plant, and needs to have maintenance to keep it working optimally.  The oil needs to be changed, the filters have to be replaced, and maintenance checks have to be performed.  I wrote a blog that covers most of these items, “Compressed Air System Maintenance”.

To connect the supply side to the demand side, a distribution system is required.  Distribution systems are pipes which carry compressed air from the air compressor to the pneumatic devices.  Just like the transmission on the car, the power is transferred from the air compressor to your pneumatic products.

Maintenance is generally overlooked in this area.  Transmissions have oil which can be detected if it is leaking, but since air is a gas, it is hard to tell if you have leaks.  Energy is lost from your pneumatic “engine” for every leak that you have.  So, it is important to find and fix them.  A study was conducted within manufacturing plants about compressed air leaks.  They found that for plants without a leak detection program, up to 30% of their compressed air is lost due to leaks.  This will be equivalent to running on only 6 cylinders in a V-8 engine.

EXAIR offers the Ultrasonic Leak Detector to find those pesky leaks.  It makes the inaudible “hiss”; audible.  It can detect leaks as far as 20 feet (6m) away with the parabola attachment, and can find the exact location of the leak to be fixed with the tube attachment.

Another area for discussion with the distribution system is contamination like rust, oil, water, and debris.  Compressed air filters should be used to clean the compressed air that supplies your pneumatic products. They can remove the debris for your pneumatic products to have a long life.  You can read about the EXAIR compressed air filters here, “Preventative Maintenance for EXAIR Filters”.

The third section is the demand side.  So, you have an engine that makes the power, the transmission to transfer that power, and the tires to use that power safely and efficiently.  Many managers miss the importance of the demand side within their pneumatic system.  If you are using blow-off devices like open pipes, coolant lines, copper tubes, or drilled pipe; it will be like running your car on flat tires.  It is very unsafe as well as reducing gas mileage.  To improve safety and efficiency, EXAIR has a line of Super Air Nozzles and Super Air Knives.  Not only will it increase your “gas mileage” to save you money, but they also will keep your operators safe.

In this analogy, you can have a high-performance engine and a durable transmission, but if your tires are bald, flat, or cracked; you cannot use your car safely and efficiently.  The same thing with your compressed air system.  You have to optimize your blow-off devices to get the most from your pneumatic system.  EXAIR is a leader in engineered blow-off devices for efficiency and safety.  So, if you want to improve the “health” of your pneumatic system, you should begin at how you are using your compressed air on the demand side.  EXAIR has Application Engineers that will be happy to help you in trying to keep your pneumatic system running like a “brand new car”.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Photo: Ford Mustang Roadster by openclipart-VectorsPixabay License

Pressure – Absolute, Gauge, and Units of Both

Compressed air is a common utility used throughout industrial facilities and it has to be measured like any other utility in order to know just how much a facility is using. When dealing with compressed air a common unit of measurement that readily comes up is psi, pound-force per square inch. This unit of measure is one of the most basic units used to measure pressure in the compressed air industry. There are other means to measure this though, so let’s discover the difference.

Again, the pressure is a force distributed over an area, the Earth’s atmosphere has pressure, if it didn’t we would all balloon up like the Violet from Willy Wonka, just without eating some prototype gum causing internal pressure. PSIA is a unit of measure that is relative to a full vacuum. It is pounds per square inch absolute (PSIA). The absolute pressure is calculated as the sum of the gauge pressure plus the atmospheric pressure. If you were to travel into space, the atmospheric pressure would be absolute zero which is actually a vacuum. There is nothing pushing from the outside in so the inside pushes out, hence the ballooning.

The atmospheric pressure on earth is based on sea level. This is 14.7 pounds per square inch absolute pressure. This pressure will change along with the weather and the altitude at which the measurement is taken.

So how do we get to the pressure that is displayed on a pressure gauge?  When shown open to room air, my pressure gauge reads zero psi. Well, that is zero psi gauge, this already has the atmosphere showing. It is not showing the Absolute pressure, it is showing the pressure relative to atmospheric conditions. This is going back to the fact that gauge pressure is the summation of absolute pressure and atmospheric conditions, for sea level on earth that is 14.7 psia. So how do we increase this and get the gauge to read higher levels?

We compress the air the gauge is measuring, whether it is using a screw compressor, dual-stage piston compressor, single-cylinder, or any other type of compressor, it is compressing the ambient, atmospheric air. Some materials do not like being compressed. Air, however, reacts well to being compressed and turns into a form of stored energy that gets used throughout industrial facilities.  By compressing the air, we effectively take the air from atmospheric conditions and squeeze it down into a storage tank or piping where it is stored until it is used. Because the air is being compressed you can fit larger volumes (cubic feet or cubic meters) into a smaller area. This is the stored energy, that air that is compressed always wants to expand back out to ambient conditions. Perhaps this video below will help, it shows the GREAT Julius Sumner Miller explaining atmospheric pressure, lack of it, and when you add to it.

Lastly, no matter where you are, there is a scientific unit that can express atmospheric pressure, compressed air pressure, or even lack of pressure which are vacuum levels. To convert between these scientific units, some math calculations are needed. While the video below is no Julius Sumner Miller, it does a great job walking through many of the units we deal with daily here at EXAIR.

 

If you want to discuss pressures, atmospheric pressure, how fast the air expands from your engineered nozzle to atmospheric, why all the moisture in the air compresses with it, and how to keep it out of your process, contact an application engineer and we will be glad to walk through the applications and explanations with you.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

1 – Willy Wonka & the Chocolate Factory – Violet Blows Up Like a Blueberry Scene (7/10) | Movieclips, Movieclips, retrieved from https://youtu.be/8Yqw_f26SvM

2 – Lesson 10 – Atmospheric Pressure – Properties of Gases – Demonstrations in Physics,  Julius Sumner Miller, Retrieved from https://www.youtube.com/watch?v=P3qcAZrNC18

3 – Pressure Units and Pressure Unit Conversion Explained, Chem Academy, retrieve from https://www.youtube.com/watch?v=2rNs0VMiHNw