The Importance Of Preventative Maintenance

The first new car I ever bought was a 1995 Ford Escort Wagon. It got GREAT gas mileage (which was important for my 25 mile one-way commute to the day job), and had ample room to haul my keyboards & amplifier rig (which was just as important to my side hustle as a potential rock star). Since it only had four miles on the odometer – and, it was the first purchase I ever financed over a period of YEARS, I decided to follow the owner’s manual’s maintenance schedule religiously. And it paid off: I got eleven years and just shy of 200,000 miles out of one of the least expensive cars ever made. It was actually still running like a top when I sold it to “upgrade” to a minivan, which suited my needs at the time for a vehicle that fitted the car seats for our little boys (who are now a U.S. Marine and a hippie college student, respectively). I actually followed the maintenance schedule for that minivan too, and got 14 years & almost 180,000 miles out of it, without a major breakdown.

Whether you call it “preventive”, “preventative”, “scheduled”, or “planned” maintenance, there’s an old adage that applies in any case:

“If you don’t plan maintenance, it’ll plan itself without regard to your schedule.”

While following the proverbial “owner’s manual’s maintenance schedule” doesn’t guarantee against catastrophic failures, it’s awfully good insurance against them. For your privately owned vehicles, I encourage you to follow the owner’s guide as best you can. For your compressed air system – from the compressor to the devices it provided compressed to (and everything in between) – there’s likely similar documentation to follow, and for good reason. Consider:

  • Air compressor maintenance. Failure to properly maintain a compressor can increase energy consumption by not keeping it operating as efficiently as possible. For example, just like not periodically replacing your car engine’s air filter will impact your gas mileage, failure to do the same for your compressor’s intake air filter will impact its production of compressed air.
  • Air leaks are costly. Not only do they waste the money you spent on running the compressor (a leak that’s equivalent to a 1/16″ diameter hole costs you over $700.00 annually – let me know if you want to do the math on that), your system pressure takes a hit too. Pressure drop caused by those leaks (plural because there’s rarely just one) can create what’s known as “false demand”, which costs you money as well: every 2psi increase in compressor discharge pressure makes for a 1% increase in power consumption. So, it’s really important to stay on top of them. Regularly scheduled surveys with an instrument like EXAIR’s Model 9207 Ultrasonic Leak Detector allows you to quickly find – and then fix – those leaks.
EXAIR Model 9207 Ultrasonic Leak Detector comes with everything you need to find out if you have a leak (with the parabolic disc, lower right) and then zero in on its exact location (with the tubular extension, bottom).
  • Filters, part 1: I already mentioned the compressor intake filter above, but the rest of the filters in the system need attention from time to time as well. Filter manufacturers typically call for replacing the element in a filter when pressure drop reaches a certain point. I’ve seen published values of 2-5psi for that. Of course, that may not occur at a convenient time to shut down everything downstream of that filter, so lots of folks replace those elements as part of planned maintenance evolutions that require depressurization of that particular part of the system anyway. Dirty filters mean you have to increase their inlet pressure to maintain the same outlet pressure you had when they were clean – and the same 1% increase in power consumption for a 2psi pressure increase applies here too.
  • Filters, part 2: most compressed air operated products have small passages that the air has to flow through, and without filtration, those can get clogged with dirt that the intake filter doesn’t catch, solid particulate from compressor ‘wear & tear’, and rust from header pipe corrosion, just to name the “usual suspects”. An argument could be made that installation & upkeep of properly rated Filter Separators at the point of use of these devices is part of those devices’ planned maintenance. In any case, it’s akin to the awfully good insurance against catastrophic failures I mentioned earlier.
Good engineering practice calls for point of use filtration and moisture removal, such as that provided by EXAIR Filter Separators.

Again, many of the components that make up a typical industrial compressed air system will have a manufacturer’s recommended maintenance schedule, but if they don’t, how can you properly plan for it? Monitoring of certain system parameters can be a valuable tool for determining how often some planned maintenance should be performed:

  • Power consumption of the compressor. The benefit of measuring & logging this on a regular basis is, if you see sudden changes, you can start looking for what’s causing them. Maybe a bearing or belt is wearing out, some leaks have popped up, or a filter’s clogged. In any case, it’s an indication that SOMETHING needs attention. Large industrial compressors might even have power monitoring in their control scheme. If not, there ARE other parameters you can measure…like:
  • Pressure and flow. EXAIR’s Pressure Sensing Digital Flowmeters make monitoring these parameters quick and easy. Managing the readings can be done with our USB Data Logger, or you can get it on your computer, via a Zigbee Mesh Gateway, with our Wireless Models.
EXAIR Digital Flowmeters are made for iron, copper, or aluminum compressed air pipe in sizes from 1/2″ to 8″ diameters. Options include Pressure Sensing, Wireless Output, USB Data Logger, Hot Tap, and Metric display.

At EXAIR, we’re committed to helping you get the most out of your compressed air system. If you’d like our help with that, give me a call.

Russ Bowman, CCASS

Application Engineer
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Featured image courtesy of Compressor1creative commons license

Turn Your One Bedroom Fixer-upper Compressor Room into a Pent House Suite!

First lets paint a picture, by starting with my first 400 Sq.Ft Bachelor pad in Holland Michigan. It was my first time after college living on my own and paying my own room and board! So I did what every fresh out of college 25-year-old male does, I scoured the internet for the cheapest possible living arrangements! And that was a one bedroom(ish) apartment that was one of three rentals they made from a small 1,500 Sq.ft house! It was rough, I could smell the smoke from my neighbors. I could tell what they were having for dinner by the smell and I could hear EVERYTHING! Needless to say the conditions were not the best to relax and properly live my life. (Just had a little PTSD thinking about it)

Yeah, that was a problem too……… (Longest 6 months of my Life)

I said all of that just to say the Environment Matters! For me, it was my living conditions and I learned that the hard way! But for your Air compressor it’s the compressor room in which it sits! While we don’t sell compressors, pretty much all of our products use compressed air so helping you generate and use it in the best and most efficient way is important to us!

Some of the mistakes that are commonly made in the compressor room are by design, and others are operational. Let’s cover a few;

  • Poor ventilation: Air compressors get hot. They’ve got a lot of moving parts, and many of those parts are moving under a great amount of force (pressure is literally defined as force per unit area), and at a high rate of speed. Add in the heat of compression (it takes energy to compress air, and that energy has to go somewhere, (something another colleague, John Ball, explains here). Add in all that friction, and you come up with a TREMENDOUS amount of heat. An industry rule of thumb, in fact, states that over 2500 Btu/hr of heat is generated, PER HORSEPOWER, by a typical industrial air compressor. If the compressor room isn’t big enough, you’ll need an exhaust fan capable of removing all that heat. Many compressors also have optional heat recovery systems as well.
  • Lack of filtration: Take a good, full breath in through your nose, right now. Did you smell anything unpleasant or irritating? I hope not…clean air is a “must” for your lungs (and the rest of your body), and the same is true for your air compressor (and the rest of your compressed air system). Keeping up with the maintenance on the intake filter is literally “starting where it all begins”…from the 1st paragraph.
  • Not removing moisture: Water & water vapor will have an adverse effect on many components of your compressed air system: it’ll cause rust in iron pipes, damage the seals in air cylinders, motors, tools, etc., and if you use it for blow off or conveying, it’ll contaminate your product.
  • Leaks: The compressor room is loud, so leaks are going to be pretty big before you can hear them. And to add insult to injury, the vibration of a running compressor makes the compressor room a prime location for them to occur. Even one small leak that you couldn’t hear in a quieter area will cost you over $100 over the course of the year, and maybe only take minutes to fix. Good news is, even if you can’t hear them, they ALL make an ultrasonic signature, and we’ve got something for that.
  • Ignoring maintenance. If you don’t schedule planned maintenance, your equipment will schedule “corrective” maintenance for you…oftentimes at greater expense, and with no regard to your schedule.
    • Moving metal parts that make metal-to-metal contact (or that have very tight spacing tolerances) HAVE to be lubricated properly. If you run low on oil, or let it get dirty or emulsified, severe damage will follow. Keeping an eye on the oil level, and changing it (and the filter) at the manufacturer’s recommended intervals, is critical.
    • Emulsified or otherwise contaminated oil can damage seals, gaskets, and o-rings. That’s obviously a big problem for the compressor, and when it carries over into the header, it’s a big problem for pneumatic cylinders & tools as well. Periodic sampling & analysis of your oil can provide timely notice of issues that can be corrected before they become catastrophic failures.
    • Depending on the type of compressor, and its drive system, the manufacturer’s maintenance recommendations may also include:
      • Checking coupling or belt alignment of the drive.
      • Checking bolts for loosening due to vibration (a “necessary evil”, especially with reciprocating compressors).
      • Adjusting the pistons to maintain valve plate clearance.
      • Tightening or replacing the mounts & vibration pads.

Don’t put your compressor in a room that smells like a cigarette butt covered in cooking grease that is infested with cockroaches. Set it up in the pent house, and it will reward you with dependable and efficient operation for a very long time! If you’d like to find out more about how EXAIR Corporation can help you get the most out of your compressed air system, give me a call.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

German Cockroach image courtesy of Sarah CampCreative Commons License.

Atto Air Nozzle Saves Dental Crown Manufacturer

This blog may get a little uncomfortable for some of us. It revolves around a subject that can strike fear into the hearts of many and just the thought of it can make sounds or smells come back from memory. For me, the sound of the high-pitched drill is precisely what comes to mind when I think of the Dentist….

That’s right, today we are talking about the Dentist. Well, more so a vendor for dentists that still deals with teeth. This manufacturer came to me looking for a way to improve their compressed air consumption on a tooling blowoff for the machining of dental crowns. They used custom-made blowoffs to try and remove the residual material on their cutting tools before contacting a new part and during the machining of a crown. The customer didn’t have a ton of room, and they did not want to redesign the entire blowoff. The blowoff was essentially an open pipe that had a .085″ diameter. Each machine station had three blowoffs, there are 20 machining stations per production line, with five total production lines. So any savings will add up quickly over 300 blowoff points.

BEFORE: A .085″ diameter open blowoff at each spindle to remove debris.

They were able to cut back and thread the end of the open blowoff for one of our 1108SS Atto Super Air Nozzles. The open blowoff was consuming 6 SCFM when operating at 80 psig inlet pressure for each blowoff point. For a single machining center that equates to 18 SCFM per center. 18 SCFM times 20 machining centers equals 360 SCFM of consumption per production line. Implementing the 1108SS reduced the consumption to 2.5 SCFM @ 80 psig per nozzle and gave a more defined blowoff pattern. 2.5 SCFM times 3 nozzles per center equates to 7.5 SCFM. 7.5 SCFM times 20 machining centers per production line totals 165 SCFM per production line. 360 SCFM minus 165 SCFM equates to 195 SCFM of compressed air savings by installing the further engineered solution.

AFTER: Three 1108SS Atto Super Air Nozzles provide adequate blowoff of debris.

Per nozzle, they can save up 72 cents per twelve-hour shift. While this does not seem like much, multiply that across 300 nozzles installed. You end up with $216.00 saved per twelve-hour shift. Some other breakdowns are shown below.

If you would like to discuss just how much a “little” open pipe blowoff is costing you, contact an Application Engineer today!

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

How To Make Your Own Air Wipe – And Why You Shouldn’t

If you have the right tools and a basic knowledge of metalworking, it’s not all that difficult to make a device to blow off wire, hose, or tubing that can be passed through. You just drill a hole through the center of a piece of bar stock (for the material to pass through), drill a couple of angled holes from opposite outside surfaces to the center hole you just drilled (for the air to blow through) and tap the start of those holes to thread your air supply line fittings into. You can even get fancy and cut it in half axially & hinge one side, so you don’t have to thread your material through it every time.

Will it work? Probably marginally. Will it be loud & inefficient? Definitely. Is there a better solution? Yes…and EXAIR has a shelf full of them.

What I described in my opening paragraph is a typical ‘block type’ air wipe device. If you don’t have the aforementioned right tools or metalworking acumen, you can buy them from a number of sources. They’re usually pretty cheap, and with a little engineering, their marginal performance can be improved, but there’s no getting around the noise level and inefficient compressed air use. The added air consumption, in fact, will steal your savings on the low purchase price in a hurry.

Come October, EXAIR will have been making quiet, efficient, and safe compressed air products for 40 years. Among these engineered products is our line of Air Wipes.

On the left is one of the ‘block style’ air wipe devices I described above. On the right is an EXAIR Super Air Wipe.

Engineered products like our Air Wipes offer a host of benefits. Consider:

  • Effectiveness. The block styles, by design, blow air through open-ended holes in the passage. Not only is this (again, by design) unevenly distributed around the perimeter of the material passing through, it’s also turbulent in nature…the force of the air flow really just impinges, or beats, on the surface. The EXAIR Air Wipe, by comparison, generates an even, steady 360° converging air flow that, by design, is laminar in nature…this makes for a stripping/sweeping action for superior cleaning/drying/blowoff of the material passing through.
  • Low sound level. The air flow coming out of the internal holes in the block style device can be ear-piercingly loud. An open ended discharge like that converts the potential energy of the compressed air to kinetic energy in the form of force, and noise. The EXAIR Air Wipe uses a relatively lower flow of compressed air to entrain surrounding air which, when forced to converge on the material via the Air Wipe’s Coanda profile, results in a much lower sound level. The Model 2399 3/8″ Super Air Wipe shown above, for example, generates a sound level of only 82dBA with an air supply pressure of 80psig.
  • Efficiency. Even if the holes in the block style device are as small as 1/4″ in diameter, they can still be flowing as much as 33 SCFM, each, with a supply pressure of 80psig. The 3/8″ Super Air Wipe, by comparison, uses only 11.1 SCFM @80psig.
  • Ease of installation. This is where the block style comes closest to competing, but the EXAIR Air Wipe still wins out. While both of the products in the above photos are a split design (meaning you don’t have to thread the material through), the EXAIR Air Wipes only require one air supply line (due to the connecting hose assembly that evenly distributes air to both halves), and the smaller ones (like the 3/8″ and 1/2″ models) can be supported by the air supply line itself, if you use pipe.

EXAIR makes Air Wipes as small as 3/8″, and as large as 11″. Standard Air Wipes feature aluminum construction, polyester shims, and a PVC/rubber/brass connector hose. Super Air Wipes have stainless steel shims & hardware, a braided stainless steel connector hose, and come in aluminum or stainless steel construction. And they’re all on the shelf, available for immediate shipment.

Air Wipe Kits come with the Air Wipe itself, a Shim Set, an Automatic Drain Filter Separator, and a Pressure Regulator w/Gauge.

EXAIR Air Wipes are just one product line of our Intelligent Compressed Air Products. If you have a blowoff, cooling, cleaning, or drying application you’d like to discuss, give me a call.

Russ Bowman, CCASS

Application Engineer
Visit us on the Web
Follow me on Twitter
Like us on Facebook