Nozzles for Cleaning Inside Hose, Tube, Pipe and More

Some applications such as blowing chips or debris out of a pipe or blind hole, it may not be possible to blow forward. The pipe may be too long, making it impossible to push the debris all the way down the pipe or the other end of the pipe may not be open. In either of these scenarios, the Back Blow Nozzle is the right tool for the job. An array of holes around the diameter of the Back Blow Nozzles provides a powerful 360° airflow pattern that will clear out any leftover coolant or chips from the machining process.

EXAIR has three different size Back Blow Nozzles; the 1004SS (M4 x .5), the 1006SS (1/4 NPT), and the 1008SS (1” NPT). The 1004SS is recommended for use on pipes as small as ¼” and up to 1”. The 1006SS can be used for a wide range of pipe sizes, from 7/8” up to 4”. The 1008SS nozzle offers the greatest overall force for stubborn or sticky materials stuck to the inside diameter of the pipe. This nozzle is suitable for use in pipes ranging from 2”-16”. As the Back Blow Nozzle will be blowing chips and debris back out of the pipe towards the operator, it is always recommended that a Chip Shield is used. The strong polycarbonate Chip Shield will keep them safe from flying debris and keep you in compliance with OSHA directive 1910.242(b).

Various Views of the Model 1006SS Back Blow Nozzle

All of EXAIR’s Back Blow Nozzles are available with extensions. For the 1004SS we have extensions from 6”-36”, and from 12”-72” for the 1006SS and 1008SS. The Back Blow Nozzle can also be installed on our VariBlast, Soft Grip, Heavy Duty, and Super Blast Safety Air Guns. With such a wide range of available sizes and configurations, we can tackle just about any internal pipe cleaning application. If you have a process in your facility that may benefit from the use of one of these nozzles, give us a call and get one on order today!

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

What’s So Great About Threaded Line Vac Pneumatic Conveyors?

Conveyor systems come in many shapes, sizes, and configurations. They can be run at different speeds, and are made of various materials, depending what they’re carrying, and why they’re carrying it. And sometimes, they’re hilarious:

If you’re looking to move solids, in bulk, through pipe, there’s not a simpler way to do it than with an EXAIR Threaded Line Vac.  Like our ‘standard’ Line Vacs, they use compressed air to generate a powerful vacuum flow to get air behind the pieces and carry them along:

Instant conveyor – just add compressed air.

But, while the ‘standard’ Line Vacs are made for use with Conveyance Hose, the Threaded Line Vacs have male NPT threads so you can pipe them in line.  We have a range of options, depending on the nature of your applications:

  • Sizes: 3/8 NPT to 3 NPT.
  • Materials: aluminum, 303SS, 316SS, and hardened alloy.
  • Performance: aluminum, 303SS and 316SS Threaded Line Vacs are made for standard duty; the hardened alloy Heavy Duty Threaded Line Vacs offer higher vacuum performance as well as superior abrasion resistance.
  • Environment: the materials of construction listed above may be important because of the nature of the product being conveyed, but they also have different temperature ratings.  Our Stainless Steel Line Vacs also come in a High Temperature design, in case the material – or the environment – is particularly hot:
    • Aluminum: 275°F (135°C)
    • Heavy Duty Hardened Alloy: 400°F (204°C)
    • 303 or 316SS: 400°F (204°C)
    • High Temp 303 or 316SS: 900°F (482°C)

If you’ve got a conveyor application you’d like to discuss, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Vortex Tubes: What is a Cold Fraction?

Have you ever needed a source of cold air but don’t want to invest in a costly chiller? INTRODUCING Vortex Tubes! Vortex Tubes use compressed air and contain no moving parts to create a cold and hot stream of air from either end of the device. Using the valve located on the hot stream a vortex tube can achieve temperatures as low as -50°F (-46°C) and temperatures as high as 260°F (127°C).

When the vortex tube is supplied with compressed air the air flow is directed into the generator that causes spin into a spiraling vortex at around 1,000,000 rpm. This spinning vortex flows down the neck and wall of the hot tube. The control valve located on the end of the hot tube allows a fraction of the hot air to escape and what does not escape reverses direction and travels back down the center of the tube and exhausts out of the cold end. Inside of the low-pressure area of the larger outer warm air vortex, the inner vortex loses heat as it flows back to the cold end of the vortex and as it exits the vortex expels cold air. The absolute temperature drop that occurs during this process is going to be controlled by the cold fraction of the Vortex Tube and the supply pressure.

The brass screw used to control the cold fraction of a vortex tube

The cold fraction is defined as the amount of the inlet supply air that will exit out of the cold end of the vortex tube. An example would be if I had 10 SCFM supplied to a vortex tube with 60% cold fraction, then 6 SCFM would be exiting the cold discharge. Cold based on the amount of air you allow out of the hot end of the vortex tube you can control the temperature drop of the cold air. A smaller cold fraction which only allows a small amount of air to exit the cold discharge will result in a larger temperature drop; and vise versa a larger cold fraction will result in a much smaller temperature drop.

Table the shows the temperature drop and rise in correlation with the cold fraction and pressure

Here a EXAIR we have designed our vortex tubes to operate optimally at both a high cold fraction and a low cold fraction. The 32XX series designed to give you the best refrigeration, which means it will work well for cold fractions ~60% – 80%. This will give you a smaller temperature drop with more air flow which allows you to keep things cool much easier. This contrasts with the 34XX series which is designed more optimal performance at lower temperatures; this means the optimal cold fraction would be ~20% to 40%. Cold fractions this low will produce very little air flow but the temperature will be very cold (as low as -50°F). This is useful if you need to get an item down to a very low temperature.

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Compressor Room Updates Improve Performance

I’d like to start out by saying a common theme I have observed over the past six months is a huge spike in DIY projects around the home. While everyone has been sent home to work and kids have been sent home to learn remotely, the home has become more than just a resting place. It is an office, school, recreation center, even movie theater. This led to an amazing year for home improvement big box stores and lots of people are tackling projects that they may have thought were beyond their level. At this point in the year we are also seeing a lot of manufacturing that either hasn’t stopped or is starting back up safely, there are lots of projects around an industrial facility that can be tackled during downturns as well.

Compressor Room – 1

The main focus today will be on a critical room that generally gets shoved back into a deep dark corner, the compressor room. The air compressor is a piece of capital equipment that generates a companies 4th utility, compressed air. This is then sent throughout most of the facility and utilized at critical points within production. Air compressors have changed their look over the years and are still often crammed into a small dimly lit room that no one wants to venture into. Having an outdated compressor room can also be causing undesirable performance and lack luster performance as well. Here’s a few items that can more often than not be addressed pretty simply to improve the overall appearance and most importantly the performance of the compressors.

Clean air intake on a screw compressor – 2

First, clean air intake. Rather than letting the compressor suck air in from the room that may be stagnant or even worse, just sucking in the hot air coming off the heat exchangers on the compressor and causing elevated compressed air temps. This fix can include ducting clean air from outside of the facility to ensure micro-debris from within the facility isn’t being pulled in. While pulling in ambient air from outside the facility will still require a filter that will need to be maintained. If a large single source is used, that is perfectly acceptable. To step this project up multiple smaller inlets that are each controlled by a damper would permit variability to match ambient conditions on temperature.

Industrial exhaust fan – 3

Second, install an exhaust fan that feeds the air not just out of the room, yet out of the facility if at all possible. This helps to promote a through-flow of air with the clean air intake and keep from recirculating dirty already cycled air. This will also help any form of system based air treatment that relies on an exchange of heat, such as a refrigerant dryer. Again, a fan that stays on constantly would be the base level fix, step this up by adding a thermostatically controlled system so the fan doesn’t run continuously.

Third, if you heat your facility throughout the winter, use that hot exhaust air from the compressors to reclaim the heat of the compression cycle and optimize your return on using electricity. This can be done by strategic routing of the exhaust ductwork mentioned above, and can be stepped up to have thermostatically controlled dampers on the ducts to open and flow the air through an adjacent room for cooler months rather than exhaust straight out during the warm Summer months.

If you would like to discuss any of these topics or any of your compressed air point of use applications, feel free to contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

 1 – Air Compressor in Engine Room – retrieved from, Work With Sounds / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0) – https://commons.wikimedia.org/wiki/File:Air_compressor_in_engine_room.JPG

2 – Screw Compressor 1 – retrieved from, Endora6398 / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0) – https://commons.wikimedia.org/wiki/File:Screw_compressor_1.jpg

3 – Industrial Exhaust Fan – retrieved from , Saud / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0) – https://commons.wikimedia.org/wiki/File:Industrial_Exhaust_Fan.jpg