The Impressive ROI of an Engineered Air Nozzle

You may have asked…why should I switch over to an engineered air nozzle if my system already works? Or…How can air nozzles be much different?

Manufacturing has always been an advocate for cost savings, where they even have job positions solely focused on cost savings. Return on Investment (ROI) is a metric they look toward to help make good decisions for cost savings.  The term is used to determine the financial benefits associated with the use of more efficient products or processes compared to what you are currently using. This is like looking at your homes heating costs and then changing out to energy efficient windows and better insulation. The upfront cost might be high but the amount of money you will save over time is worth it.

Model 1100 Super Air Nozzles can save compressed air dollars and increase safety

But how is ROI calculated? It is very simple to calculate out your potential savings of using one of EXAIR’s Intelligent Engineered Compressed Air Products. If you would rather not do the calculations out yourself then we can do it for you by sending the item in question to our Efficiency Lab Testing. The Efficiency Lab Testing is a free service that we offer to show you the possible savings by switching to one of our products.

The following is a simple ROI  calculation for replacing open blowoffs with an EXAIR Super Air Nozzle:

  • ¼” Copper Pipe consumes 33 SCFM at 80 psig (denoted below as CP)
  • A Model 1100 ¼” Super Air Nozzle can be used to replace and only uses 14 SCFM at 80 psig (denoted below as EP)

Calculation:

(CP air consumption) * (60 min/hr) * (8 hr/day) * (5 days/week) * (52 weeks/year) = SCF used per year for Copper Pipe  

(33) * (60) * (8) * (5) * (52) = 4,118,400 SCF

(EP air consumption) * (60 min/hr) * (8 hr/day) * (5 days/week) * (52 weeks/year) = SCF used per year for EXAIR Product  

               (14) * (60) * (8) * (5) * (52) = 1,747,200 SCF

Air Savings:

SCF used per year for Copper Pipe – SCF used per year for EXAIR Product = SCF Savings

               4,118,400 SCF – 1,747,200 SCF = 2,371,200 SCF in savings

If you know the facilities cost to generate 1,000 SCF of compressed air you can calculate out how much this will cost you would save. If not, you can us $0.25 to generate 1,000 SCF which is the value used by the U.S. Department of Energy to estimate costs.

Yearly Savings:

                (SCF Saved) * (Cost / 1000 SCF) = Yearly Savings

                                (2,371,200 SCF) * ($0.25 / 1000 SCF) = $592.80 annual Savings

With the simple investment of $42 (as of date published) you can calculate out the time it will take to pay off the unit.

Time Until payoff:

                (Yearly Savings) / (5 days/week * 52 weeks/year) = Daily Savings

                                ($592.80/year) / (5 days/week * 52 weeks/year) = $2.28 per day

                (Cost of EXAIR Unit) / (Daily Savings) = Days until product has been paid off

                                ($42) / ($2.28/day) = 17.9 days  

As you can see it doesn’t have to take long for the nozzle to pay for itself, and then continue to contribute toward your bottom line. 

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Process Improvement, ROI and Safety from One Air Nozzle

Process improvement projects can be detailed, complex, expensive, and take a long time to prove their worth.  Today, I want to tell you about one that WAS NOT ANYTHING like that.

A metal stamping company used compressed air to blow their products from their dies.  They did what many do – they ran some copper tubing, and aimed it at the platen so it would properly eject the parts as they were stamped.  They KNEW it was loud, and they suspected it was inefficient as well.

After discussing the setup and seeing a picture of it (the one on the left, below,) I recommended installing a few engineered Super Air Nozzles to lower the noise levels considerably.  Boy, was I wrong.  About “a few” nozzles, that is…turns out, they only needed one Model 1122-9212 2″ Flat Super Air Nozzle with 12″ Stay Set Hose.  The copper tubes come from a manifold that already had 1/4 NPT ports – installation took a matter of minutes.  Nothing detailed, complex, or expensive about it:

This loud & inefficient copper tubing blowoff was just a compression fitting (and a Model 1122 2″ Flat Super Air Nozzle) away from being quiet and efficient.

It didn’t take much longer than that to prove its worth either: as soon as they noticed how much the noise level went down on THIS press, they ordered them for the other eighteen presses in their facility as well.

The 1/4″ copper tubes blew continuously from a pressure regulator set @60psig…the three of them theoretically consumed a total of ~80 SCFM.  The Model 1122, at 60psig supply, consumes only 17.2 SCFM.  Simple return on investment was as follows:

  • 80 SCFM was costing them $48.00 a week
    • 80 SCFM X 60 min/hr X 8 hr/day X 5 days/week X $0.25/1,000 CFM = $48.00
  • 17.2 SCFM, using the same formula, only costs $10.32 a week (I’ll let you do the math; it’s good practice.)
  • They saved $37.68 a week.  The Model 1122-9212 costs $116.00 (2020 pricing) – that means that each of them paid for themselves in just a hair over three weeks.
  • $37.68 x 50 work weeks per year = $1884.00 saved annually per nozzle
  • $1884 x 18 (the number of presses) = $33,912 saved annually 

Considering they also didn’t have to listen to those very loud open ended copper tube blowoffs, I think you’ll have to agree it made for a very good investment.  They did. The new nozzle runs at 77 decibels, a comfortable level and well below the OSHA standard [29 CFR – 1910.95(a)] for allowable noise exposure.

If you’d like to find out how EXAIR Intelligent Compressed Air Products can save you money on compressed air – and save everyone’s hearing – give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

EXAIR’s Return on Investment For One Engineered Air Nozzle is Amazing!

Return on Investment (ROI) is a measure of the gain (preferably) or loss generated relative to the amount of money that was invested.  ROI is typically expressed as a percentage and is generally used for financial decisions, examining the profitability of a company, or comparing different investments.  It can also be used to evaluate a project or process improvement to decide whether spending money on a project makes sense.  The formula is shown below-

ROI
ROI Calculation
  • A negative ROI says the project would result in an overall loss of money
  • An ROI at zero is neither a loss or gain scenario
  • A positive ROI is a beneficial result, and the larger the value the greater the gain
1100group
Our catalog publishes most products’ performance and specification data for a compressed air supply pressure of 80psig.

Example – installing a Super Air Nozzles (14 SCFM compressed air consumption) in place of 1/4″ open pipe (33 SCFM of air consumption consumption) .  Using the Cost Savings Calculator on the EXAIR website, model 1100 nozzle will save $1,710 in energy costs. The model 1100 nozzle costs $42, assuming a $5 compression fitting and $45 in labor to install, the result is a Cost of Investment of $92.00. The ROI calculation for Year one is-

ROI2

ROI = 1,759% – a very large and positive value.  Payback time is only 13 working days!

If you have questions regarding ROI and need help in determining the gain and cost from invest values for a project that includes an EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Air Savings Calculator

I received an email from an engineer that was looking at our Super Air Nozzles.  They currently were using four blow-off lines that were made from 6mm ID copper tubes. The system was designed to blow out holes after machining.  The engineer was in charge of the task of optimizing 25 machining stations similar to this one.  He was familiar with EXAIR products from his previous employment, and he recognized the waste of compressed air by using open pipe.  He purchased four Nano Super Air Nozzle, model 1110SS, for a trial.  He was impressed with the performance, the low sound level, and the engineered design in safety.  But, for upper management in his company, he had to show a cost savings in order to change all the stations in the facility.  He asked me to help him in calculating the compressed air savings.

nano nozzle

He gave me some additional details about their application.  He was using the compressed air about 30% of the time throughout an 8 hour day at a pressure of 80 PISG.  He wanted to present the savings per day, week, and year as well as the payback period in his evaluation.  I have performed many of these calculations for other customers and was happy to help.  It is sometimes easier to speak in terms of savings, as everyone can relate to money, especially management.

Knowns:

Flow: 1110SS Nano Super Air Nozzle – 8.3 SCFM at 80 PSIG

Flow:  6mm ID copper tube – 42 SCFM at 80 PSIG

This is where the COST SAVINGS CALCULATOR on our website shines!

The Calculator tells us you will see a ROI (Return on investment) is less than 5 days! And will save you $3,033.00 over a full year on compressed air generation cost alone!

Don’t be fooled by the initial cost of a tube, pipe, drilled holes, or a substandard nozzle.  You can see by the facts above, if you use any additional compressed air in your blow-off application, it will cost you a lot of money in the long run.  If you need any help in calculating how much money EXAIR products can save you, you can use our Air Savings Calculator from our website, or you contact an Application Engineer at EXAIR.  We will be happy to help you.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS