Atto Air Nozzle Saves Dental Crown Manufacturer

This blog may get a little uncomfortable for some of us. It revolves around a subject that can strike fear into the hearts of many and just the thought of it can make sounds or smells come back from memory. For me, the sound of the high-pitched drill is precisely what comes to mind when I think of the Dentist….

That’s right, today we are talking about the Dentist. Well, more so a vendor for dentists that still deals with teeth. This manufacturer came to me looking for a way to improve their compressed air consumption on a tooling blowoff for the machining of dental crowns. They used custom-made blowoffs to try and remove the residual material on their cutting tools before contacting a new part and during the machining of a crown. The customer didn’t have a ton of room, and they did not want to redesign the entire blowoff. The blowoff was essentially an open pipe that had a .085″ diameter. Each machine station had three blowoffs, there are 20 machining stations per production line, with five total production lines. So any savings will add up quickly over 300 blowoff points.

BEFORE: A .085″ diameter open blowoff at each spindle to remove debris.

They were able to cut back and thread the end of the open blowoff for one of our 1108SS Atto Super Air Nozzles. The open blowoff was consuming 6 SCFM when operating at 80 psig inlet pressure for each blowoff point. For a single machining center that equates to 18 SCFM per center. 18 SCFM times 20 machining centers equals 360 SCFM of consumption per production line. Implementing the 1108SS reduced the consumption to 2.5 SCFM @ 80 psig per nozzle and gave a more defined blowoff pattern. 2.5 SCFM times 3 nozzles per center equates to 7.5 SCFM. 7.5 SCFM times 20 machining centers per production line totals 165 SCFM per production line. 360 SCFM minus 165 SCFM equates to 195 SCFM of compressed air savings by installing the further engineered solution.

AFTER: Three 1108SS Atto Super Air Nozzles provide adequate blowoff of debris.

Per nozzle, they can save up 72 cents per twelve-hour shift. While this does not seem like much, multiply that across 300 nozzles installed. You end up with $216.00 saved per twelve-hour shift. Some other breakdowns are shown below.

If you would like to discuss just how much a “little” open pipe blowoff is costing you, contact an Application Engineer today!

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Rebates Rewarded for Energy Efficiency & How to Get Them

The patented design of EXAIR’s 1” and 2” Flat Super Air Nozzles makes them a highly efficient option when seeking a powerful, flat airflow. A precise air gap across the width of the nozzle provides a forceful stream of high velocity, laminar airflow without consuming high amounts of compressed air and also resulting in a greatly reduced sound level compared to some of the alternative flat nozzles available in the market.

Did you know that upgrading to an efficient engineered air nozzle, such as the 1” or 2” Flat Super Air Nozzle, can make you eligible for an incentive from your energy provider? Similar to other energy-saving programs for upgrading to LED light bulbs or high-efficiency HVAC systems, these are made available to you as an incentive to start using more energy efficient products.

The energy costs associated with the generation of compressed air, often referred to in industry as a 4th utility, can make it expensive. These programs are offered to encourage you to use engineered products that are more energy efficient due to the reduction in compressed air consumption. Essentially, they’re offering you free money to implement a solution that will also save you money. It almost sounds too good to be true!! But these products, after implementation and receiving the incentive, will continue to save you money year after year.

The US Department of Energy, in conjunction with the NC Clean Energy Technology Center, provides a website that allows you to search the various programs available to you in your state. The DSIRE® website allows you to select your state, then select your energy provider to determine what programs are offered.

In Southwest Ohio, Duke Energy provides an incentive that offers $40 USD each per engineered air nozzle that is installed. When replacing open pipe or tube, these nozzles generally pay for themselves relatively quickly. But, when combined with a $40 USD rebate, that return on investment happens even quicker!!!

Don’t leave free money on the table. If you’re using open pipe or tube, or inefficient plastic flat nozzles, replace them with an engineered air nozzle from EXAIR. If you need help determining what rebate programs are available to you in your area, we’re also here to help. Contact an EXAIR Application Engineer today!

Tyler Daniel, CCASS

Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Why doesn’t my “XYZ” work?

Pic by PoseMuse licensed by Pixabay

You’ve probably been there. You install a new Super Air Knife, or an EasySwitch Wet-Dry Vac (or any other product), and it doesn’t work as we promised. Or it works great for 2-3 years, and now it’s faltering. You have trouble shot everything you know to do. You’ve changed the filters, checked for leaks on the product, checked the connections, but still it is not performing as it was, or how it is supposed to. This is usually when I get the call, and more times than not, the issue is related to the air supply.

Whether this new item isn’t performing, or an older product has been working for 2 weeks, months, or years and stops, we first need to confirm the pressure. First, we need to make sure there is a T and pressure gauge at the point of use. Although psig is only one factor of the air flow, if it is too low (or too high in some cases) that is a definite problem. Without the proper psig, our tools will not function properly. If the psig is sufficient, and our product is not operating as claimed, the next thing we check is the SCFM.

There are a few ways of finding the SCFM…one is very easy and reliable, and the other can get you close enough to realize if there is a problem or not. The easy way is by installing a Digital Flow Meter near the point of use. Although the most reliable, it is not always feasible or cost-effective to have these near every air application in your system.

Without the Flow Meter, we need to start looking for reasons why the SCFM is not there. Whether a new install or an existing one, we need to evaluate the air flow by starting with the basics. Let’s start by identifying how much air your application requires. For instance, a Super Air Knife consumes 2.9 SCFM per inch, so a 48″ Super Air Knife will use 139.2 SCFM (at standard operation), that is equivalent to a 35 HP compressor dedicated solely to this 1 product. Assuming your compressor is large enough to flow this amount of air, we need to see what other products are being utilized in the system as well. Does your overall system have enough air to run each product?

So your compressor is large enough, the next step is to look at your line size. To run 139.2 SCFM, you will need a 3/4″ line and that is if you are within 20 ft of the source (compressor). If you are 150 feet away, you will need 1 1/4″ lines, and so on. This is an issue that pops up often.

The next thing we look for is any type of restrictions on the line. Are your filter and oil separators sized properly? Were there new products / stations added to the line. Is the product itself being maintained properly? Is your Air clean and dry? Are there any other line restrictions that could be interfering with the flow?

If all of these things check out, our last course of action is to get the product back for evaluation. We will tear it apart, many times needing to destroy it to find the cause. But proudly, I must say that we rarely find a manufacturing defect, but we look hard just in case, because we want to know as well. We can usually show you the issue, and find the root cause. Our reputation and quality is the highest in the industry, and it is not something we take lightly. We want to find a defect if it exists, so that we can immediately address them, and head off any future issues.

If you have one of our products that isn’t functioning as you hoped, or just purchased one that isn’t up to par, please look at some of the items mentioned above. And as always, reach out to us and let us help f we can.

Thank you for stopping by,

Brian Wages

Application Engineer

EXAIR Corporation
Visit us on the Web
Follow me on Twitter

Cover photo by gerralt / 25503 and licensed by Pixabay

Super Air Nozzles for the Blowoff, and the Win!

Just take a moment and really look at the precision that is engineered into these SUPER Air Nozzles. The fins, the angle of the holes. The only thing missing is a cape and an S on the front like this one on the right. At a quick glance, these nozzles look simple, but they are far from it. I’ve had multiple customers reach out because they are using a simple open pipe to blow off X, Y, or Z. It really is mind “blowing” to me to hear this. Just a few days ago, I spoke to a customer that has over 20, 3/8″ open lines that blow air 24/7. I can almost hear that problem from here, and I definitely can feel the pain of their money being waisted. Up to 80% of your air can be saved with the right nozzles vs. open pipe or tubes. If waisitng money isn’t enough, the noise alone would be deafening without the nozzles, and not at all up to OSHA standards.

These Super Air Nozzles comply with the OSHA standards 29 CFR 1910.242(b) for dead end pressure requirements, and 29 CFR-1910.95(a) concerning noise. The only exceptions to the noise level is when we get into our High Force nozzles. As you can imagine, if you are needing more than 90 SCFM of air, with 4.5+ pounds of force out of a nozzle, it will make some noise. By the way, it will still meet OSHA’s dead end pressure standard and the EXAIR defines how much unprotected noise exposure is allowed by OSHA with each nozzle above their threshold.

When we look at the fins and shapes of the holes, they are intelligently designed to maximize the coanda effect on each nozzle. This allows these nozzles to amplify the compressed airflow (black Arrow) up to 25 times or more. As the air travels along the outer wall of the nozzles it will entrain the surrounding air into the airstream. This results in a high velocity blast of air with minimal consumption.

If you have any type of homemade or makeshift blowoff system using copper tube, open pipe, or pipe fittings please take a moment and look at the amount of air that is being waisted. We can use these Super Air Nozzles to save an astronomical amount of air. Take a look at this Air Consuption table as a solid example:

As you can see on this table the 1/4″ Copper Tube uses 33 SCFM, and the 1/4″ Open Pipe uses 140 SCFM. Now when we install the 1/4″ Super Air Nozzle it drops the cunsumption down to 14 SCFM. The benefits do not stop there. The noise is dropped to 74 dBA, and you are no longer violating the OSHA requirements.

When you have a blowoff situation, please reach out and discuss our options. Many times the solution is as easy as using a Super Air Nozzle and sometimes you may actually need the Flux Capacitor. We are here to help guide you between these two extremes. Please feel free to reach out at anytime to discuss your Air Nozzle, or any other compressed air solutions.

Thank you for stopping by,

Brian Wages

Application Engineer

EXAIR Corporation
Visit us on the Web
Follow me on Twitter

Cover photo by Kranich 17, licensed by Pixabay. Superman “S” photo by JayKingSta14, licensed by Pixabay.