Shade-Tree Mechanics and EXAIR Products

EXAIR most often sells business to business, but we also sell to individuals who need the right tools for their home projects.

If you frequent our blog it is no secret that I tend to have projects going on outside of work and I generally find a reason to have an EXAIR product when I am doing them. The first EXAIR application I had at home was in fact utilizing an E-Vac to build a motorcycle brake bleeder.  I still use that to this day, it is on my bench ready to help me rebuild my rear brake system on my bike once I decide to do it. I’ve blogged about that before. The most recent application I had was working on an early 1970’s Jeep with a close friend. He inherited the Jeep from his dad who no longer wanted to work on it. The Jeep hadn’t run in over a year and the original reason for parking it was ticking in the motor.

Broken parts removed – Time for cleaning.

Sure enough, once he got it up and running with some fresh gas and cleaning up the carb the tick had not gone away but he was able to narrow down that it was in fact coming from under the valve cover, so off it came.  We discovered that one of the bridges that hold down the valve rocker was broken, parts were ordered and we started cleaning everything off. The fix could all be had from right up top under the valve cover and should be easy enough once parts were in.  We cleaned up all the oil, removed all the bridges as well as the pushrods.

When we were removing the bolts from the valve cover and bridges there was a good amount of “sludge” and debris around the bolt holes.  When cleaning this all up some did go into the holes and we really wanted to try and keep all debris up top rather than going down into the motor. We noticed some crud around the top of the pushrod holes so we waited until we could use an Atto Back Blow Nozzle on a VariBlast Compact Safety Air Gun to pass down through the pushrod holes and effectively blow any and all debris back up to the top of the motor.  We also were able to use it on the blind holes of the bridge bolts and remove any fines or buildup that had fallen into the hole.

Cleaned up and ready for reassembly

After we were done cleaning up it was time to reinstall with the new part and having a clean top end made the job that much easier. Buttoned everything up, did an oil change, and then the Jeep fired right up with no ticking noise in the motor. Now he just has to clean up some wiring and get tags to put this classic back on the road.

Having the right tool for the job is always the best solution. Whether you are working on a car at home, or if you are career certified mechanic in a shop, the same goes across any industry. When using compressed air in an application EXAIR is the company that can supply you with the right tool to get the job done efficiently, safely, and quickly.

If you would like to discuss any point of use compressed air application, please contact an Application Engineer.

Brian Farno
Application Engineer / Shade-tree mechanic
BrianFarno@EXAIR.com
@EXAIR_BF

The Importance Of Properly Sized Compressed Air Supply Lines

EXAIR Corporation manufactures a variety of engineered compressed air products that have been solving myriad applications in industry for almost 37 years now.  In order for them to function properly, though, they have to be supplied with enough compressed air flow, which means the compressed air supply lines have to be adequately sized.

A 20 foot length of 1/4″ pipe can handle a maximum flow capacity of 18 SCFM, so it’s good for a Model 1100 Super Air Nozzle (uses 14 SCFM @80psig) or a Model 110006 6″ Super Air Knife (uses 17.4 SCFM @80psig,) but it’s going to starve anything requiring much more air than those products.  Since compressed air consumption of devices like EXAIR Intelligent Compressed Air Products is directly proportional to inlet pressure, we can use the flow capacity of the pipe, the upstream air pressure, and the known consumption of the EXAIR product to calculate the inlet pressure of a starved product.  This will give us an idea of its performance as well.

Let’s use a 12″ Super Air Knife, with the 20 foot length of 1/4″ pipe as an example.  The ratio formula is:

(P2 ÷ P1) C1 = C2, where:

P2 – absolute pressure we’re solving for*

P1 – absolute pressure for our published compressed air consumption, or C1*

C1 – known value of compressed air consumption at supply pressure P1

C2 – compressed air consumption at supply pressure P2

*gauge pressure plus 14.7psi atmospheric pressure

This is the typical formula we use, since we’re normally solving for compressed air consumption at a certain supply pressure, but, rearranged to solve for inlet pressure assuming the consumption will be the capacity of the supply line in question:

(C2 P1) ÷ C1 = P2

[18 SCFM X (80psig + 14.7psia)] ÷ 34.8 SCFM = 49psia – 14.7psia = 34.3psig inlet pressure to the 12″ Super Air Knife.

From the Super Air Knife performance chart…

This table is found on page 22 of EXAIR Catalog #32.

…we can extrapolate that the performance of a 12″ Super Air Knife, supplied with a 20 foot length of 1/4″ pipe, will perform just under the parameters of one supplied at 40psig:

  • Air velocity less than 7,000 fpm, as compared to 11,800 fpm*
  • Force @6″ from target of 13.2oz total, instead of 30oz*
  • *Performance values for a 12″ length supplied with an adequately sized supply line, allowing for 80psig at the inlet to the Air Knife.

Qualitatively speaking, if you hold your hand in front of an adequately supplied Super Air Knife, it’ll feel an awful lot like sticking your hand out the window of a moving car at 50 miles an hour.  If it’s being supplied with the 20 foot length of 1/4″ pipe, though, it’s going to feel more like a desk fan on high speed.

The type of supply line is important too.  A 1/4″ pipe has an ID of about 3/8″ (0.363″, to be exact) but a 1/4″ hose has an ID of only…you guessed it…1/4″.  Let’s say you have 20 feet of 1/4″ hose instead, which will handle only 7 SCFM of compressed air flow capacity:

[7 SCFM X (80psig + 14.7psia)] ÷ 34.8 SCFM = 19psia – 14.7psia = 4.3psig inlet pressure to the 12″ Super Air Knife.

Our Super Air Knife performance chart doesn’t go that low, but, qualitatively, that’s going to generate a light breeze coming out of the Super Air Knife.  This is why, for good performance, it’s important to follow the recommendations in the Installation Guide:

This table comes directly from the Installation & Operation Instructions for the Super Air Knife.
All Installation Guides for EXAIR Intelligent Compressed Air Products contain recommended air supply line sizes for this very reason.  If you have any questions, though, about proper compressed air supply, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Video Blog: How-To Replace The Super Air Scraper Blade

The EXAIR Soft Grip Super Air Scraper is a great tool for any industrial environment that requires some cleanup. Some examples include removing tapes or sticky metal chips from the floor, scraping material from screening towers or removing stubborn adhesives and labels from workstation tabletops. They are available with extensions up to 72″ so reaching remote areas is also easier.

Today’s video is going to showcase how easy it is to replace the scraper blade within the nozzle and get back to work quickly.

If you would like to discuss how the Super Air Scraper could benefit your facility, contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

How Lowering Sound Levels Produces ROI

Sound levels and ROI don’t immediately link together in a quick thought. Unless you are me and things seem to link up that don’t always go together, like peanut butter and a cheese burger. (Trust me, just try it, or if you are near West Lafayette, Indiana just go try the Purvis Burger across the street from Purdue University.) The truth behind tying sound levels being reduced and ROI together is actually pretty simple.

For this example, I am going to stay fairly high level as we could get into some pretty deep measurements of what exactly could be a cost savings.  If we reduce the sound level being generated by point of use compressed air products that is easiest to do by implementing engineered blow off products as well as reducing the operating pressure. Let’s use this example: A 1/4″ copper tube that is being used as a blow off will give off a noise level of over 100 dBA from 3′ away.  The table below shows that at an 80 psig inlet pressure the same tube will also consume 33 SCFM of compressed air.

By installing a model 1100 1/4″ FNPT Super Air Nozzle on the end of this copper tube, we  reduce the noise level generated by the blow off to 74 dBA. This measurement is at the same 80 psig inlet pressure and from 3′ away, which is well below the OSHA standard for allowable noise level exposure.  This also gives a broader more defined pattern to the air stream which may permit a reduction in compressed air pressure.

The other factor this changes is that the air consumption is reduced by 19 SCFM of compressed air which then results in energy savings.  This ultimately ends in a simple ROI equation where we are simply using the compressed air reduction as the only variable for the return.

 

By reducing the air consumption of a process that operates 24/7, 250 days a year that equates to  a savings of 6,840,000 SCFM per year and that equates to $1,710.00 USD. This does not account for any reduction in paying for hearing protection that may no longer be needed, or increase in production because the application functions better.

So you see, reducing noise levels in a facility can easily amount to a sizable cost savings in energy going towards compressed air consumption.  If you would like to walk through any potential applications, please contact us. 

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF