EXAIR Cabinet Cooler Systems – How Do they Work?

Cabinet Cooler systems eliminate heat related problems by providing a temperature controlled environment inside of electrical enclosures. Typically set to maintain 95F (but also adjustable) a Cabinet Cooler system can withstand harsh, remote environments with little maintenance. They cool heat loads up to 5600 Btu/Hr and are UL listed to maintain your cabinet’s NEMA integrity. 

Compressed air enters the vortex tube powered Cabinet Cooler and is converted into two streams, one hot and one cold. Hot air from the vortex tube is muffled and exhausted through the vortex tube exhaust. The cold air is discharged into the cabinet through the included cold air distribution kit. The displaced hot air in the cabinet rises and exhausts to atmosphere through the cabinet cooler body. The control cabinet is both cooled and purged with cool, clean air. Outside air is never able to enter the control panel.

sl17_Nema4
How it works! 

EXAIR’s compressed air operated, Cabinet Cooler Systems are a low cost, reliable way to cool and purge electronic control panels. There are no moving parts to wear out and no filters to replace, eliminating the need for constant monitoring.

NEMA Type 12 (IP54) and NEMA 4 and 4X (IP66) models are available that are very compact and mount in just minutes through an ordinary electrical knockout.

Cabinet Cooler Family
EXAIR Cabinet Cooler Sizes 

Available in a wide range of cooling capacities, ranging from 275 Btu/hr. for our smallest system, up to 5,600 Btu/hr. for our largest Dual System.

Thermostat control systems are the most efficient way to operate a Cabinet Cooler as they limit compressed air use by operating only when the temperature inside the enclosure approaches critical levels. Continuous Operating Systems are recommend when constant cooling and constant positive pressure inside the panel is required.

Thermostat controlled Cabinet Cooler Systems are the best option when experiencing fluctuating heat loads caused by environment or seasonal changes. Thermostatically Controlled Systems include a Cabinet Cooler, adjustable thermostat, solenoid valve, cold air distribution kit consisting of tubing and self adhesive clips to duct the cold air inside the panel and a filter separator to remove any water or contaminants from the supply.

Thermostat and ETC

If you would like to discuss our cabinet cooler systems or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on FacebookTwitter: @EXAIR_JS

EXAIR Digital Sound Level Meters Measure Noise Exposure Levels

slm-newlabel
Digital Sound Meter

EXAIR offers the model 9104 Digital Sound Level Meter.  It is an easy to use instrument for measuring and monitoring the sound level pressures in and around equipment and other manufacturing processes.

Sound meters convert the movement of a thin membrane due to the pressure waves of sound into an electric signal that is processed and turned into a readable output, typically in dBA.  The dBA scale is the weighted scale that most closely matches the human ear in terms of the sounds and frequencies that can be detected.

Noise induced hearing loss can be a significant problem for many workers in manufacturing and mining. To protect workers in the workplace from suffering hearing loss OSHA has set limits to the time of exposure based on the sound level.  The information in the OSHA Standard 29 CFR – 1910.95(a) is summarized below.

OSHA Noise Level

The EXAIR Digital Sound Level Meter is an accurate and responsive instrument that measures the decibel level of the sound and displays the result on the large optionally back-lit LCD display. There is an “F/S” option to provide measurement in either ‘slow’ or ‘fast’ modes for stable or quickly varying noises. The ‘Max Hold’ function will capture and hold the maximum sound level, and update if a louder sound occurs.

Certification of accuracy and calibration traceable to NIST (National Institute of Standards and Technology) is included.

If you have questions about the Digital Sound Level Meter, or would like to talk about any of the quiet EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Compressed Air Efficiency – How It Benefits Business

It is estimated that typically plants can waste up to 30 percent of their generated compressed air and that cost is substantial.  Considering the average cost to generate compressed air here in the Midwest is .25 cents per 1,000 Standard Cubic Feet, that translates into .075 cents for every .25 cents spent!  Compounded with the fact that energy costs have doubled in the last five years, it couldn’t be a better time to make your air compressor system more efficient.

efficiencylab

The following steps will help you save air and in turn save money.

  1. Measure the air consumption to find sources that use a lot of compressed air.

Knowing where you stand with your compressed air demand is important to be able to quantify the savings once you begin to implement a compressed air optimization program. Placing a value upon your compressed air consumption will also allow you to place a value on its costs and the savings you will reap once you start to reduce your consumption. (EXAIR’s Digital Flow Meter)

9093ZG-DG

  1. Find and fix the leaks in your compressed air system.

Not fixing your compressed air system leaks can cause your system pressure to fluctuate and affect your equipment negatively. It may cause you to run a larger compressor than necessary for your compressed air needs and raise your total costs. Or it could cause your cycle and run times to increase which leads to increased maintenance to the entire system. (EXAIR’s Ultrasonic Leak Detector)

uhd kk

  1. Upgrade your blow off, cooling and drying operations using engineered compressed air products.

Your ordinary nozzle with a through hole and a cross drilled hole can be an easy choice based upon price, but if you do not consider the operating cost you do not really know how much it is costing you. An Engineered Air Nozzle will pay for itself and lower operating costs quickly. Engineered Air Nozzles are the future of compressed air efficiency and are made to replace ordinary nozzles, homemade nozzles and open line blow offs. Engineered Nozzles reduce air consumption and noise levels; ordinary nozzles cannot compete. Engineered Nozzles maintain safety features and can qualify for an energy savings rebate from a local utility; ordinary nozzles fall short. Open blow off or homemade blow off applications typically violate OSHA safety standards; Engineered Nozzles do not.  (EXAIR’s Air Nozzles)

nozzlescascade2016cat29_559
EXAIR Nozzles
  1. Turn off the compressed air when it is not in use.

Automated solutions add solenoid valves and run them from your machine controls. If the machine is off, or the conveyor has stopped – close the solenoid valve and save the air.  And blow off applications can benefit from any space in between parts by turning the air off during the gaps with the aid of a sensor and solenoid. (EXAIR’s automated  Electronic Flow Control)

 

  1. Use intermediate storage of compressed air near the point of use.

Also known as secondary receivers, intermediate air storage is especially effective when a system has shifting demands or large volume use in a specific area. Intermediate storage is the buffer between a large demand event and the output of your compressor. The buffer created by intermediate storage (secondary receiver) prevents pressure fluctuations which may impact other end use operations and affect your end product quality. (EXAIR’s Receiver Tanks)

  1. Control the air pressure at the point of use to minimize air consumption.

This is a very simple and easy process, all it requires is a pressure regulator. Installing a pressure regulator at all of your point of use applications will allow you to lower the pressure of these applications to the lowest pressure possible for success. Lowering the pressure of the application also lowers the air consumption. And it naturally follows that lower air consumption equals energy savings. (EXAIR’s Pressure Regulators)

By increasing your awareness of the health of your air compressor system and implementing a PM program you can significantly reduce your costs from wasted energy and avoid costly down time from an out of service air compressor.

If you would like to discuss improving your compressed air efficiency or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

 

Air Quality Classes – Understanding ISO 8573-1:2010

ISO 8573-1:2010 is the international standard for Air Quality Classes. It lays the ground rules for acceptable levels of pollutants, particulate, moisture, and oil in a compressed air source.

This slideshow requires JavaScript.

Specification Example: ISO 8573-1:2010 [2:2:1]

This indicates Class 2 for particles, Class 2 for water, and Class 1 for oil.

Though the standard has detailed standards for maximum particle size, maximum pressure dew point and maximum oil content for different industries and/or environments (see Slide show above) we can generalize a bit and express the levels of air quality like this:

Plant Air – general plant compressed air used for air tools, nozzles etc.
Instrument Air – found in laboratories, paint and powder coat booths, used for climate control.
Process Air – used in food and pharmaceutical applications, electronics applications.
Breathing Air – used for breathing respirators, breathing tanks and hospital air systems.

Achieving the different levels of air quality can be done with 3 basic types of filtration.
     1. Particulate – a filter element removes particles larger than the opening in the filter material. Typically done with particles greater than 1 micron.
     2. Coalescing – use different methods to capture the particles; 1) direct interception – works like a sieve, 2) Inertial impaction – collision with filter media fibers, 3) Diffusion – particles travel in a spiral motion and are captured in the filter media.
     3. Adsorption – the filter element holds the contaminants by molecular adhesion.

Filters
EXAIR FILTER SEPARATORS

The higher the class your air needs to be the more of these filtration methods you will use. Adsorption will remove more and finer particles than a simple particulate filter. And many applications will use a combination of these methods.

EXAIR products, all of which need a source of “clean, dry air” will operate very well utilizing a source of plant air and only a particulate filter. Your process, dictate if you need to supply additional filtration methods for better air quality. For example, an automotive plant using compressed air to blow parts off will not need the kind of filtration a food handling facility will need while blowing a food product off. If you are using a lubricated compressor or have lubricant in your compressed air lines from another source, you will want to use a coalescing oil removal filter.

EXAIR stocks 5 micron particulate filters which are properly sized for each individual product as an option for our customers if they choose. We also stock coalescing oil removal filters for customers who may need to remove oil from the air. Replacement filter elements are also available and should be replaced at least twice a year, depending on the quality of your air.

Oil Removal Filter
EXAIR Oil Removal Filter

Remember to ask about filtration if you have any concerns about your air quality. We can assist in sizing up the proper filters to get the air quality we recommend for proper operation and longevity of our products. 

If you would like to see how we might be able to improve your process or provide a solution for valuable savings, please contact one of our Application Engineers.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Images Courtesy of  the Compressed Air Challenge

Super Air Knife’s Adjustability and Flexibility = Success

The EXAIR Super Air Knife is the most efficient compressed air knife on the market. We know this because we’ve tested them, and our competitors’ offerings, for performance, using the same instruments, controls, and procedures. We’re not going to publish data that we can’t back up, and that’s a fact.

48insak_pr
EXAIR Super Air Knife removing moisture after a rinse on anodized parts.

They’re also ideally suited to a wide variety of applications – they come in lengths from 3 inches to 9 feet long (and can actually be coupled together for uninterrupted air flows of even longer lengths,) a variety of materials for just about any environment. But the best thing about our Super Air Knives is how you can adjust the air pressure and flow to complete a wide variety of tasks. You can adjust them in two different ways, Replacing or adding Shims, or regulating the incoming air pressure.

completeAirknifesets
Shims for the aluminum, 303 Stainless Steel, and 316 Stainless Steel Super Air Knives

Changing out your shim!

A larger shim gap will give you higher flow and force from your Air Knife. Honestly, the 0.002″ shim that comes pre-installed in all of our Air Knives is perfectly suitable for most blow off applications, and appropriate air supply conditions are the first thing you should check for before going with thicker shims, but if you do indeed need a boost, a thicker shim will indeed give you one…here’s a blog with the video to show you how it’s done:

How_to_change_air_knife_shim
Video Blog: How to Change a Shim in a Super Air Knife

Filter Regulator
Regulator and filter

Another advantage to having a Pressure Regulator at every point of use is the flexibility of making pressure adjustments to quickly change to varying production requirements.  Not every application will require a strong blast sometimes a gentle breeze will accomplish the task.  As an example one user of the EXAIR Super Air Knife employs it as an air curtain to prevent product contamination (strong blast) and another to dry different size parts (gentle breeze) coming down their conveyor. For Performance at different supply pressures see the chart below.

Super_Air_Knife_Performance
Super Air Knife Performance Table

EXAIR products are highly engineered and are so efficient that they can be operated at lower pressures and still provide exceptional performance!  This save’s you money considering compressed air on the average cost’s .25 cents per 1000 SCFM.

If you’d like to discuss altering the performance of your Super Air Knife, give us a call.

Jordan Shouse
Application Engineer
Find us on the Web http://www.exair.com/28/home.htm
Follow me on Twitter
Like us on Facebook

EXAIR Cabinet Cooler Systems: Thermostats and Accessories

For most industrial enclosure cooling applications, a temperature of 95°F (35°C) is sufficient to be below the rated maximum operating temperature of the electrical components inside the cabinet. So, it is important to turn the cabinet cooler system on to keep the components cool, but at the same time we all know compressed air can be expensive if you over use it. A thermostat allows you to turn the cooler off when the enclosure is at or below the desired temperature, saving compressed air over continuous operation.

Cabinet Cooler

Here at EXAIR we are all about Engineered Solutions that will not only save you money but help your company “Go Green” by drastically lowering your energy costs. And when it comes to Cabinet Coolers, we have several options to control and manage the compressed air supply.

The most popular option is our Thermostat Control. EXAIR thermostats feature a bimetallic contact strip to open and close the electrical circuit in response to air temperatures.  These thermostats quickly respond to changes in air temperature and are specifically suited for their intended use.  Preset for 95°F (35°C), a suitable temperature for most electronic devices, these thermostats are fully adjustable for specific application needs. When thermostat closes it then turns the solenoid valve off turning the compressed air supply off. These thermostats are available in 12VAC, 240VAC and 24VDC.

Thermostat and ETC

In the event a more sophisticated thermostat control is needed, Electronic Temperature Control units can be implemented.  These standalone units utilize a thermocouple to determine internal cabinet temperatures which display onto a digital readout.  Push-button controls on the digital readout board allow for easy modification of the internal cabinet temperature set-point.  When the desired internal temperature is reached, the Cabinet Cooler system will turn off automatically.

One accessory that will give the flexibility to install EXAIRS cabinet cooler system is our Side Mount Kit. Sometimes there isn’t room above an electrical panel to fit the Cabinet Cooler, even though it takes just 5″ to 7.25″ of space above. In these cases, the Side Mount Kit is available to handle any of the Cabinet Cooler sizes and NEMA ratings. The NEMA 4 and 4X Cabinet Coolers must be mounted vertically for the unit to properly resist the ingress of liquids and maintain the integrity of the cabinet NEMA rating.

EXAIR NEMA 12 Cabinet Cooler System w/ Side Mount Kit
NEMA 12 Cooler with Side Mount Kit

The Side Mount Kits install into a standard electrical knockout (1-1/2 NPS) for easy installation.

If you’re in need of a suitable cooling solution for an industrial enclosure, consider an EXAIR Cabinet Cooler systems.  They’re smaller than traditional AC units, faster to install, and require little-to-no-maintenance.  Feel free to contact an EXAIR Application Engineer with any questions, or fill out our online Cabinet Cooler Sizing Guide to have an Application Engineer contact you.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

The Scientific Legacy of James Clerk Maxwell

On June 13, 1831 at 14 India Street, in Edinburgh Scotland James Clerk Maxwell was born. From a young age his mother recognized the potential in James, so she took full responsibility of his early education. At the age of 8 is mother passed away from abdominal cancer, so his father enrolled him in the very prestigious Edinburgh Academy.

10494489114_c59c9170c3_z.jpg

James was fascinated by geometry at a early age, many times learning something before he was instructed. At the age of 13 he won the schools mathematical medal and first prize in both English and poetry. At the age of 16 he starting attending classes at the University of Edinburgh, and in 1850 he enrolled at the University of Cambridge.

 

8784212715_a69700b03f_z.jpg

The largest impact he had on science were his discovery’s around the relationship between electricity, magnetism, and light. Even Albert Einstein credited him for laying the ground work for the Special Theory of Relativity. He said his work was “the most profound and the most fruitful that physics has experienced since the time of Newton.”

Maxwell also had a strong interest in color vision, he discovered how to take color photographs by experimenting with light filters.

But here at EXAIR we are very interested in his work on the theory that a “friendly little demon” could somehow separate gases into hot and cold flows, while unproven in his lifetime, did actually come to fruition by the development of the Vortex Tube.  Which does just that.

How A Vortex Tube Works

So here’s to you, James Clerk Maxwell…may we continue to recognize your brilliance, and be inspired by your drive to push forward in scientific developments.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Photo credit to trailerfullofpix & dun_deagh