Crescent Hammers, Phillips Head Punches, and Other Cautionary Tales

I don’t want to sound “preachy,” but I’m a stickler for using the right tool for the job. Case in point: just the other day, I noticed (OK; my wife told me about) a loose drawer handle. I went to my toolbox in the garage to get a flat-head screwdriver, even though the drawer in question had a selection of butter knives, any one of which could have been used to tighten that screw.

I can trace this, without doubt or hesitation, to my service in the US Navy, under the direction of Senior Chief Cooper.  Proper tool selection & use was VERY important to him.  He stressed the issues of safety, quality, and performance, but if that didn’t work, he’d make his point with an offer to demonstrate the use of a specific tool (a ball peen hammer) on a sensitive part of your anatomy (it’s exactly the part you’re thinking of.)  At that point, it would have been unwise (and unsafe) to question whether that was a proper use of the tool or not.

Only one of these is a hammer………………..….only one of these is a punch………………..…..only one of these is a chisel.
Choose wisely.

Likewise, there are safety, quality, and performance issues associated with compressed air blow offs.  At EXAIR, we’re ALL sticklers about this, and we get calls all the time to discuss ways to get more out of compressed air systems by using the right products.  Here’s a “textbook” example:

A hose manufacturer contacted me to find out more about our Air Wipes, and how they might be a better fit for their various cleaning & drying applications (spoiler alert: they are.)  The blow offs they were using were made of modular hose, designed (and very successfully used) for coolant spraying in machine tools.

Only one of these is a compressed air blow off. Again…choose wisely.

The selection process was two-fold: they purchased one Model 2401 1″ Super Air Wipe to verify performance, and they sent in some of their modular hose assemblies for Efficiency Lab testing.  The first part was just as important as the second because, no matter how much air they were going to save (another spoiler alert: it was significant,) it wouldn’t matter if it didn’t get the job done.  At the station shown above, the Super Air Wipe resulted in superior performance, and a compressed air cost savings of over $400.00 annually.  For that one station.  Based on that, they outfitted TWENTY FIVE stations with engineered product sized for their different hoses, using our Model 2400 (1/2″), 2401 (1″), 2402 (2″) and 2403 (3″) Super Air Wipes.

If you’d like to find out how using the right product for the job can help your operation, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Non-Hazardous Purge Cabinet Cooler Solves Two Problems At Once

Electrical control panel above belt press machine

The image above shows an electrical panel located over a belt press machine.  Belt press machines can be used in a variety of mechanical separation applications, from juice manufacturing to de-watering of grains, and even algae extraction.  The use in this application, however, was to assist in the removal of liquid from styrene via multiple “wedge zones” which force the styrene between an upper and lower belt, applying increasing pressure and forcing the liquid from the styrene roll.

The Plant Manager of the facility which uses this cabinet contacted EXAIR in search of a solution to provide cooling for this enclosure, and wanted to know if we could also provide some means to provide a constant ventilation as well.  We discussed the merits of the Cabinet Cooler in terms of cooling power, and also discussed our Non-Hazardous Purge Cabinet Cooler systems which provide a constant feed of 1 SCFM of compressed air into an enclosure.  This slight airflow into the cabinet provides a slight positive pressure which further helps to prevent any dust from entering the cabinet.  For older cabinets with potentially weakened seals, these systems can provide an added level of protection against harmful dust in the ambient environment.

After sending a Cabinet Cooler Sizing Guide and determining the proper model number (NHP4825), the customer asked about lead time.  They said that the machine was intermittently shutting down and they needed something FAST.  I informed them that EXAIR Cabinet Coolers ship from stock and we can even ship UPS Next Day Air if need be.

Knowledgeable engineering support coupled with a shoe-in solution and on-the-shelf availability got this application under control quickly.  If you’re having a similar experience with your electrical control panels, contact EXAIR’s Application Engineering department for a similar solution experience.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

ROI – Return on Investment

Return on Investment (ROI) is a measure of the gain (preferably) or loss generated relative to the amount of money that was invested.  ROI is typically expressed as a percentage and is generally used for personal financial decisions, examining the profitability of a company, or comparing different investments.  It can also be used to evaluate a project or process improvement to decide whether spending money on a project makes sense.  The formula is shown below-

ROI

  • A negative ROI says the project would result in an overall loss of money
  • An ROI at zero is neither a loss or gain scenario
  • A positive ROI is a beneficial result, and the larger the value the greater the gain

Gain from investment could include many factors, such as energy savings, reduced scrap savings, cost per part due to increased throughput savings, and many more.  It is important to analyze the full impact and to truly understand all of the savings that can be realized.

Cost of investment also could have many factors, including the capital cost, installation costs, downtime cost for installation, and others.  The same care should be taken to fully capture the cost of the investment.

Example – installing a Super Air Nozzles (14 SCFM compressed air consumption) in place of 1/4″ open pipe (33 SCFM of air consumption consumption) .  Using the Cost Savings Calculator on the EXAIR website, model 1100 nozzle will save $1,710 in energy costs. The model 1100 nozzle costs $37, assuming a $5 compression fitting and $50 in labor to install, the result is a Cost of Investment of $92.00. The ROI calculation for Year 1 is-

ROI2

ROI = 1,759% – a very large and positive value.  Payback time is only 13 working days.

Armed with the knowledge of a high ROI, it should be easier to get projects approved and funded.  Not proceeding with the project costs more than implementing it.

If you have questions regarding ROI and need help in determining the gain and cost from invest values for a project that includes an EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Vortex Tube Cold Fractions – An Explanation

Vortex Tube Family

At EXAIR we’ve been a pioneer in the compressed air market for the past 34 years.  We’ve brought engineered nozzles to the market which reduce compressed air consumption while maintaining performance, laminar flow Air Knives, pneumatic conveyors, atomizing nozzles, air-assisted static eliminators, and a slew of other products.  One of these “other” products is our Vortex Tube, which we manufacture in various sizes while also using as a basis for our Cold Guns, Adjustable Spot Coolers, Mini Coolers, and Cabinet Coolers – all of which are built on the same Vortex Tube technology.

Theory of operation for an EXAIR Vortex Tube

The principle behind a Vortex Tube is rooted in the Ranque-Hilsch effect which takes place inside of the tube.  As a compressed air source is fed into the Vortex Tube, the air flows through a generator and begins to spin down the length of the tube, “hugging” the ID of the tube.  When this spinning air contacts a deliberate obstruction at the end of the tube, it is forced to reverse directions, which requires a change in diameter to the vortex.  The original vortex must decrease in diameter, and in order to do so, it must give off energy.  This energy is shed in the form of heat, and a portion of the incoming air is directed out of the tube with a drastically reduced temperature via what is called the “cold end”.  Another portion of the air escapes through the “hot end” of the tube, resulting in a cold airflow at one end, and a hot airflow at the other end of the tube.

Small, but powerful, Vortex Tubes really are a marvel of engineering.  And, like most useful developments in engineering, Vortex Tube technology begs the question “How can we control and use this phenomena?”  And, “What are the effects of changing the amount of air which escapes via the cold end and the hot end of the tube?”

EXAIR Vortex Tube Performance Chart

These answers are found in the understanding of what is called a cold fraction.  A cold fraction is the percentage of incoming air which will exhaust through the cold end of the Vortex Tube.  If the cold fraction is 80%, we will see 80% of the incoming airflow exhaust via the cold end of the tube.  The remaining airflow (20%) will exhaust via the hot end of the tube.

For example, setting a model 3210 Vortex Tube (which has a compressed air flow of 10 SCFM @ 100 PSIG) to an 80% cold fraction will result in 8 SCFM of air exhausting via the cold end, and 2 SCFM of air exhausting through the hot end of the Vortex Tube.  If we change this cold fraction to 60%, 6 SCFM will exhaust through the cold end and 4 SCFM will exhaust through the hot end.

But what does this mean?

Essentially, this means that we can vary the flow, and temperature, of the air from the cold end of the Vortex Tube.  The chart above shows temperature drop and rise, relative to the incoming compressed air temperature.  As we decrease the cold fraction, we decrease the volume of air which exhausts via the cold end of the Vortex Tube.  But, we also further decrease the outlet temperature.

This translates to an ability to provide extremely low temperature air.  And the lower the temperature, the lower the flow.

Red box shows the temperature drop in degrees F when an EXAIR Vortex Tube is operated at 100 PSIG with an 80% cold fraction.

With this in mind, the best use of a Vortex Tube is with a setup that produces a low outlet temperature with good cold air volume.  Our calculations, testing, and years of experience have found that a cold fraction of ~80% can easily provide the best of both worlds.  Operating at 100 PSIG, we will see a temperature drop of 54°F, with 80% of the incoming air exiting the tube on the cold end (see red circle in chart above).  For a compressed air supply with a temperature of 74°F-84°F (common compressed air temperatures), we will produce an output flow with a temperature between 20°F and 30°F – freezing cold air!

With a high volume and low temperature air available at an 80% cold fraction, most applications are well suited for this type of setup.  When you order a Vortex Tube from EXAIR we will ship it preset to ~80% cold fraction, allowing you to immediately install it right of the box.

The cold air from an EXAIR Vortex Tube is effective to easily spot cool a variety of components from PCB soldering joints to CNC mills, and even complete electrical control panels.  Contact an Application Engineer with application specific questions or to further discuss cold fractions.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Digital Flowmeter Improves Production Scheduling And Upgrade Budgeting

“You can’t manage what you can’t measure” might be the most popular axiom in any process improvement endeavor. And it’s true. We hear it almost every time we discuss a Digital Flowmeter application, and a conversation I just had with a customer was no exception.

Their business is growing, and they’re pushing the limits of their compressed air system. The use compressed air to run their CNC mills in their machine shop, for blow off/cleaning as they assemble products, as well as a variety of pneumatic tools throughout the shop. The CNC machines’ air load was pretty consistent…the rest of the shop; not so much. So they wanted to find out when their compressed air demand peaked, and what it peaked at, in order to make a more informed decision about upgrading their compressor.

From your Digital Flowmeter to your computer screen, the USB Data Logger tells you how much air you’re using…and when you’re using it!

So, they purchased a Model 9095-DAT Digital Flowmeter for 2″ SCH40 Pipe, with USB Data Logger. They installed it immediately, with the USB Data Logger set to record once a second…this told them their consumption at any given time over the course of the day. Every day at closing time, the shop manager pulls the USB Data Logger from the Digital Flowmeter and transfers the data to his computer. After just a few days, he knew exactly how much air they were using…and exactly when they were using it. He’s now using this data (in the short term) to plan certain operations around peak scheduling, and (in the long term) to know what they’re looking at for their next air compressor.

Do you know as much about your compressed air usage as you should? If you’d like to talk about how to measure…and manage…your air consumption, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Two Birds With One Stone (and A Shim)

Blowing off bottles is such a popular application for the EXAIR Super Air Knife, it’s been featured on the cover of our Catalog…several times…and is the “banner” pictures on the Super Air Knives page on our website:

This always makes me thirsty for orange soda.

I had the pleasure of helping a caller from a bottling plant recently with just such an application.  Thing is, they run a couple of different size bottles, and it’s not a very big facility…they didn’t want to, or have room to, install different lengths of Air Knives, and also didn’t want to waste air flow when they were running the shorter bottles.

9″ Air Knives were required for the taller bottles, but their shorter bottles were a little under 6″ tall.  They had considered buying both 6″ and 9″ Air Knives, but called me to see if there was a less expensive, and possibly, easier way.  (There is!)

EXAIR makes, and stocks, every product in our 208 page catalog right here in this building in Cincinnati, Ohio.  We also make custom parts when the need arises…and custom Air Knife shims were the solution to this customer’s application.

By installing two Model 110009 9″ Aluminum Super Air Knives, one on either side of the conveyor (just like the photo above,) they’re able to blow off the taller bottles.  When they run the shorter bottles, they change out the shims for ones that limit the flow to a 6″ curtain.

So…for a little under $50.00 (2017 cost for those custom shims,) they’re going to save almost $550.00 per year in compressed air costs – AND make sure that their compressed air system is optimized & available for other loads throughout the plant.

EXAIR offers the Super Air Knife in lengths from 3″ to 108″, with a 0.002″ shim installed.  They’re ideal for most industrial and commercial blow off applications, right out of the package.  If your application calls for something a little “outside the box,” you may only be a shim away from success.  If you have such an application, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Pneumatically Conveying Corn Flakes From Large Sacks Using An EXAIR Line Vac

This workspace needs a pneumatic conveyance solution.

I’ve had a string of great Line Vac applications which I’ve been able to write about recently.  Using our Heavy Duty Line Vac to convey small particles, vacuuming alumina dust two applications in the same plant, and removing chips from a plastic CNC router.  But, the application for this blog is a bit different because it involved conveyance of a material to prevent worker fatigue.

Dried corn flakes in super sack.

The dried flakes shown above needed a reliable method to convey between the large sacks in which they’re delivered and the boilers into which they need to be added.  The existing operation has been to have personnel cut open the bags and pour them into the boilers, but this method is taxing for the workers and results in significant fatigue throughout the day as well as spillage around the boilers.  This facility needed a better way to move the corn flakes that was small enough to fit within the confined workspace and capable of quickly emptying the sacks over a distance of ~6.5 ft.

The corn flakes need to be conveyed from the sacks on the right to the boilers on the left.

This customer requested that the solution be made of 316 grade stainless steel, and that implementation and use be as simple as possible.  With a bulk density of ~40 pounds/cubic foot, and merely a desire to move the material as fast as possible over this short distance, I directed them toward our 3” Stainless Steel Line Vac made of 316SS.  To increase the conveyance in the application I also offered our service to convert our standard model 6066-316 Line Vac to a “High Power” unit by increasing the size of the generator holes.

Both of these solutions were deemed as viable because they both allow for fast emptying of the bags (we estimated between 1-2 minutes to completely empty a bag), little-to-no spillage, and far, far less fatigue on the workers in this area (the key driver for searching out a new method of material transfer.

The potential model numbers were presented to management for a purchasing decision.  As this project moves forward, and even after the solution is installed, we’ll be available for product assistance and engineering support.  If you have an application in need of a viable pneumatic conveyor, contact EXAIR.  We’ll be happy to explore the application and offer any potential solutions.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

%d bloggers like this: