316 Stainless Steel Products- Always in Stock

Metallurgically speaking, stainless steel is a steel alloy with the highest percentage contents of iron, chromium and nickel, with a minimum of 10.5% chromium content by mass, and a maximum of 1.2% of carbon by mass.

Stainless steels are widely regarded for the corrosion resistance that they exhibit. As the chromium content is raised, the corrosion resistance increases as well. The addition of molybdenum also increases the corrosion resistance to reducing acids and against pitting attacks in chloride solutions. By varying the chromium and molybdenum content, different grades of stainless steel are produced with each suited for varying environments. Due to the resistance to corrosion and staining, stainless steel is ideal material for many applications, especially in the food, pharmaceutical, and chemical industries.

The 300 series stainless steels are considered chromium-nickel alloys and is the largest group and most commonly used. Of the different compositions within the 300 series family, Type 304 stainless is the most widely used followed by Type 316, which has 2% molybdenum added to provide greater resistance to acids and to localized corrosion caused by chloride ions.

Table below shows the nominal composition by mass content for 316 stainless steel

316 SS Table

Because 316 stainless steel provides a high level of corrosion resistance, resists pitting, and has good strength properties, EXAIR manufactures many of its products from 316 stainless steel material so that they can be used in the harshest of environments.

Of the EXAIR products these are available off the shelf in 316 stainless steel- Super Air Knife, certain sizes of Adjustable Air Amplifiers, numerous Air Nozzles, Line Vacs including the Sanitary Flanged style, NEMA Type 4X and Hazardous Location Cabinet Coolers. If you need one of our other products such as the Super Air Wipes or Vortex Tubes made in 316 stainless steel, just let us know. Of course we also have them made from Type 303 stainless steel, in stock and ready for shipment (and aluminum, too!)

gh_stainless-steel-super-air-knife-750x696.jpg
316 Stainless Steel Super Air Knife

And, you don’t have to wait months or even weeks, as we keep all of these in stock, ready for shipment.

If you have questions about any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Compressed Air Pressure Regulators Conserve And Protect

Imagine you’re enjoying a nice shower. A cascade of warm water is soothing your body – and spirit – then, someone starts the dishwasher. Or a load of laundry. Or flushes the toilet. Suddenly, the “soothe” turns to “scald” or “freeze,” depending on whether you’ve been robbed of hot, or cold water.  So, what happened?

What happened is, all of those “loads” on your house’s water supply that can ruin your shower experience are controlled by simple on/off valves…they open to permit a certain amount of water FLOW to pass.  When the dishwasher starts, or someone decides to wash a load of whites, the HOT water from your nice warm shower is diverted, leaving a stream of cold water.  When a toilet flushes, or it’s a load of colors, the COLD water is diverted…and that’s not just unpleasant, but downright painful.  Either way, (in my house anyway,) a teenager is getting read the riot act.

The same phenomenon can apply in a compressed air system, if simple flow control valves are used to throttle the appropriate supply of air to a pneumatic device.  If someone, for example, hooks up an air gun to blow off their tools or parts, the valves on EVERYTHING else will need to be opened up some to keep those devices working the same.  In the case of an air gun like this, it usually happens too quick to make the necessary adjustments (by hand) and you’re probably left with a machine tripped off-line, or a ruined part.

Pressure Regulators can prevent this by keeping (or regulating) their downstream pressure to a set value.  If a load elsewhere in the system is activated, the Pressure Regulator opens up, automatically, to keep its output constant.  When that load is secured, the Pressure Regulator closes back down accordingly.  Either way, no single load affects the operation of any others.

That’s only half the value of the use of Pressure Regulators, though.  The other half is, well…the value.  Just looking at a typical function of many EXAIR Intelligent Compressed Air Products – blow off – they’ll all pretty much accomplish the task if you run them, unrestricted, straight off your header.  That’ll give you a good, strong blast of air flow…and it may be more than what’s required, and a waste of good air.  Pressure Regulators will prevent this by allowing you to “dial in” the supply pressure to whatever it takes to get the job done, and no more.

EXAIR offers a range of Pressure Regulators capable of handling air flow of up to 700 SCFM.

Compressed air isn’t free.  Heck, it isn’t even cheap.  Don’t use any more than you have to, and get the most out of what you do use.  Pressure Regulators are one important step in doing this.  If you’d like to talk about optimizing your use of your compressed air system, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

The Case For EXAIR Swivel Fittings

One of the more common questions we get here in the Application Engineering department at EXAIR is…

“What’s the best angle to position a Super Air Nozzle?”

The simple (and perhaps a little snarky, but I swear that’s not intended) answer is…

“The angle it takes to get the results you need.”

But wait, there’s more…we’re not going to leave anybody hanging like that. Many blow off applications are going to be best served by a “sweep” of air, at a low angle. That will be ideal for removing a light layer of dust from a relatively flat and smooth surface. A bit larger angle, relative to the surface, may be necessary if you need some impingement force to dislodge sticky, clumpy, or mildly adhesive debris.  Rarely will you want to blow directly, at a perpendicular angle, to a material’s surface.  An exception to this might be if you’re trying to remove excess moisture from a porous and thin material, like a web fiber.

Regardless of what angle you need to aim your Super Air Nozzle, there are several ways to do it.  You can use a compression fitting them onto bendable copper tubing…just don’t bend it too much or too often.  We’ve got Stay Set Hoses that allow for quick & easy repositioning…they come in lengths from 6″ to 36″, and are in stock.

EXAIR Stay Set Hoses and Swivel Fittings are ideal for installation and positioning of your Super Air Nozzle.

If you want to hold it in place firmly and securely, you’re looking for a Swivel Fitting.  They’re available for almost all of our Super Air Nozzles, from the Atto to the 1″ NPT Model 1114 High Force Super Air Nozzle.  They offer 50° of total movement, and are made of Stainless Steel for durability in most any environment.

EXAIR Swivel Fittings have male NPT threads on one end, and female NPT on the other.  The smaller Swivels, for the Atto, Pico, and Nano Super Air Nozzles, have M4x0.5mm, M5x0.5mm, and M6x0.75mm female threads, respectively, in the ball of the swivel itself for direct threading of these small Super Air Nozzles.

EXAIR’s Swivel Fitting Family

Swivel Fittings can also be used with a host of other EXAIR products.  In addition to the Super Air Nozzles, for example, they’ve historically been very popular with our Air Amplifiers.  Here’s a short informational video showing just how versatile they are:

EXAIR Intelligent Compressed Air Products are made to be easy to install & operate.  This is our intent from Research & Development, to Shipping & Receiving.  If you have questions, give me a call.  I want you to get the most out of our products!

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

About Compressed Air Dryers – What Are They and Why Use Them

All atmospheric air contains some amount of water vapor.  When air is then cooled to saturation point, the vapor will begin to condense into liquid water. The saturation point is the condition where the the air can hold no more water vapor. The temperature at which this occurs is knows as the dew point.

When ambient air is compressed, heat is generated and the air becomes warmer. In industrial compressed air systems, the air is then routed to an aftercooler, and condensation  begins to take place. To remove the condensation, the air then goes into separator which traps the liquid water. The air leaving the aftercooler is typically saturated at the temperature of the discharge, and any additional cooling that occurs as the air is piped further downstream will cause more liquid to condense out of the air. To address this condensation, compressed air dryers are used.

It is important to dry the air and prevent condensation in the air. Many usages of the compressed air are impacted by liquid water being present. Rust and corrosion can occur in the compressed air piping, leading to scale and contamination at point -of -use processes. Processes such as drying operations and painting would see lower quality if water was deposited onto the parts.

dryers.png

There are many types of dryers – (see recent blogs for more information)

  • Refrigerant Dryer – most commonly used type, air is cooled in an air-to-refrigerant heat exchanger.
  • Regenerative-Desiccant Type – use a porous desiccant that adsorbs (adsorb means the moisture adheres to the desiccant, the desiccant does not change, and the moisture can then be driven off during a regeneration process).
  • Deliquescent Type – use a hygroscopic desiccant medium that absorbs (as opposed to adsorbs) moisture. The desiccant is dissolved into the liquid that is drawn out. Desiccant is used up, and needs to be replaced periodically.
  • Heat of Compression Type – are regenerative desiccant dryers that use the heat generated during compression to accomplish the desiccant regeneration.
  • Membrane Type– use special membranes that allow the water vapor to pass through faster than the dry air, reducing the amount water vapor in air stream.

The air should not be dried any more than is needed for the most stringent application, to reduce the costs associated with the drying process. A pressure dew point of 35°F to 38°F (1.7°C to 3.3°C) often is adequate for many industrial applications.  Lower dew points result in higher operating costs.

If you have questions about compressed air systems and dryers or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

UL Classified Certification for HazLoc Cabinet Coolers

Although history only records back so far, I am certain (based on my experiences with sharp and heavy objects) that humans have been injuring themselves with tools, and the stuff they make with them, since the beginning of time.  In fact, recorded history DOES bear this out…the famous Code of Hammurabi (circa 1750 B.C.) set specific amounts of compensation for specific injuries, as did laws from all over the ancient world, from the empires of Rome to China.  Since then, we’ve come a long way in regulating safety not only for the worker in the workplace, but in public places, homes, and workplaces where manufactured products are used.

UL LLC (or Underwriters Laboratories, as they were known throughout the 20th Century) is a safety consulting & certification company founded in 1894 by an electrical engineer named William Henry Merrill.  A year earlier, an insurance company hired Merrill to perform a risk assessment and investigation of new potential clients…George Westinghouse and Nikola Tesla, the proprietors of the Palace of Electricity at the 1893 Chicago World’s Fair.  It was this experience that made him realize the potential for such an agency to test and set standards for product safety at the dawn of a new age of technology development.  And 120 years on, the benefits in safety & protection have been proven many times over.

If a product or device carries one of these markings, it’s been evaluated for safety by top professionals in the field.

One of the more critical accreditations that a manufacturer can receive for a product is the UL Classified Mark.  This differs from other markings (like the ones shown above for Certified, Listed, or Recognized) in that Classification means that samples of the product were tested & evaluated with respect to certain properties of the product.

EXAIR’s new Hazardous Location Cabinet Cooler Systems bear the UL Classified Mark.  This means they meet the stringent UL requirements for installation on purged electrical enclosures in specific classified areas:

  • Class I Div 1, Groups A, B, C and D
  • Class II Div 1, Groups E, F and G
  • Class III
EXAIR Hazardous Location Cabinet Cooler Systems maintain NEMA 4/4X Integrity and are CE Compliant.

When choosing products for use in classified areas, it’s critical to ensure safety through compliance, and the HazLoc Cabinet Cooler Systems allow you to do that, with simplicity and reliability.  If you’d like to discuss an enclosure cooling application, in or out of a classified area, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Compressed Air Use in the Aerospace Industry

EXAIR’s products have been used for a very large selection of applications in almost every industry.  Today I want to highlight a few that pertain to the Aerospace Industry.

First – a quick lesson on how to access the Applications database– Be sure to Register and then Log In

From the main page, hover the mouse pointer over ‘KNOWLEDGE BASE‘ and the pop-up menu will appear as seen below.  Select ‘APPLICATIONS’ Website Applications.png

On the left hand side of the screen you will see a gray navigation pane that shows Application with a list underneath.  Scroll down the main page and you will see a second heading in the navigation pane labeled “Industry”.  You can select your industry from the list provided.  For today’s example we will select Aerospace.

Industry_App_Database
The Industry section of the Application Database is found on the left hand side of the screen in the navigation pane.

Once the industry is selected there will be a new list of applications that are displayed in the center of the page.   Simply select the application you would like more information on and the details will display.

Below, we showcase the application from a machine manufacturer for the Aerospace industry.   This customer manufactured the production equipment of a flexible, porous material that is continuously passed through a wash tank prior to cutting to length.  They were interested in speeding the drying process of this strand, and considered blowing hot air onto it.  It was not feasible to install an electrically powered hot air blower or gun.  They needed an air flow of approximately 15 SCFM at 200°F, and had 70 psig air supply with a large volume available.  They utilized a Vortex Tube installed over the strand after it exited the dip tank.   The Vortex Tube was oriented with the hot air exhaust blowing on to the strand to dry the strand.  The customer stated that they not only met their expectations but exceeded the original hopes and were able to dry the product quicker and safer than expected.

Vortex_Tube_Drying_Material
Selecting any of the listed applications in the center of the screen will display the details of that particular application.

This is just one of many applications that are showcased in the Application Database for the Aerospace industry.   Those are just a small sampling of the thousands of applications that can be researched through the database.  If you would like to share your application to the database, feel free to contact an Application Engineer.

If you have questions about any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Benefits of Atomized Liquid Nozzles vs. Liquid Nozzles

There are a great many applications that require a spray (as opposed to a stream) of liquid. Certain droplet sizes, and flow rates, are beneficial for certain applications. For example, if you’re fighting a fire, you want as high of a flow rate as possible – the more water you douse the fire with, the quicker it goes out.  You also want a fairly large droplet size, since a mist would tend to evaporate instead of extinguishing the flames.

Pressure washers also benefit from higher (though not near as high as fire hose) flow rates, and droplet sizes.  You want an appreciable flow rate, because that means high velocity, and good sized droplets combine that velocity with their relative mass to “blast” away dirt and detritus from the surface.

Medicine delivery devices, like asthma inhalers, are designed to produce mid-sized droplets, but pretty low (and controlled) flows.  The droplets need to be small enough to efficiently spread the medicine through the breathing passages, but large enough to where they won’t evaporate before they ‘plant’ on the nasal & bronchial membranes to get absorbed.

These are examples of “liquid-only” nozzles…no other media or means of force are used to effect the spraying action.  Most of the time, the droplet sizes in these applications are measured in hundreds of microns, which “liquid-only” nozzles are ideally suited to generate.  Other applications, however, call for much smaller droplet sizes…such as those only attainable through atomization.

EXAIR Atomizing Spray Nozzles use compressed air to create a fine mist of liquid, with droplet sizes as low as 22 microns.

A typical “liquid-only” nozzle is capable of producing droplet sizes of 300-4,000 microns. Atomizing Nozzles’ droplet sizes are consistently under 100 microns, and can be as small as 20 microns!

Small droplet size is key to cost effectiveness in many applications:

  • Think about expensive coatings…the smaller the droplet size, the better and more even the coverage, and the less you have to spray (and pay) out.
  • Or humidification…smaller droplet size means more stays airborne, for longer, and in a larger space.
  • Petroleum based lubricants, by their nature, only require a thin layer for best results.  Smaller droplets make as even and thin of a layer as possible.
  • Dust control is much more effective with smaller droplet sizes, since the longer the mist lingers in the air, the more dust particles the individual droplets will adhere to…and then drop with them to the surface.  This also prevents getting the surface of the material any wetter than it has to be.
142 distinct models. 8 different patterns. Liquid flow rates from 0.1 to 303 gallons per hour. If you’ve got a spraying application, EXAIR has an Atomizing Nozzle for you!

If you’d like to discuss a liquid spraying application, I’d love to hear from you.  Call me.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook