How it Works: Theory Behind the Vortex Tube

What is a vortex tube and how does it work? A vortex tube is a device used to separate compressed air into a cold and hot stream of air; but the main question that many people have theorized is how does this device work.

In 1928 George Ranque, a French physics student stumbled upon this phenomenon on accident while he was performing experiments on a vortex type pump. During the experiment George noticed that hot air was being exhausted from one side and the other side was producing cold air. Eventually the device was forgotten about until 1945 when the German physicist, Rudolph Hilsch published a paper describing the device, eventually causing it to gain popularity and find applications in the industrial world.

EXAIR’s Vortex Tube uses compressed air as the supply and contains no moving parts to create a cold and hot stream of air from either end of the device. Using the valve located on the hot stream the vortex tube can achieve temperatures as low as -50°F (-46°C) and temperatures as high as 260°F (127°C).

The diagram bellow is one of the widely accepted explanations for the vortex tube phenomenon.

When the vortex tube is supplied with compressed air the air flow is directed into the generator that causes spin into a spiraling vortex at around 1,000,000 rpm. This spinning vortex flows down the neck of the hot tube denoted in the diagram as red. The control valve located on the end of the hot tube allows a fraction of the hot air to escape and what does not escape reverses direction and travels back down the tube in a second vortex denoted in blue. Inside of the low-pressure area of the larger outer warm air vortex, the inner vortex loses heat as it flows back to the front of the vortex and as it exits the vortex expels cold air.

The phenomenon is theorized to occur because both the hot and cold streams rotate at the same velocity and direction. This means that a particle of air in the inner vortex makes a complete revolution in the same time that a particle in the outer vortex takes to make a complete revolution. This effect is known as the principle of conservation of momentum and is the main driving force behind the vortex tube. In order for the system to stay in equilibrium air particles lose energy, in the form of heat, as they move from the outer stream to the inner stream, creating the cold air vortex that gets expelled.

At EXAIR we have harnessed many uses of vortex tubes for your cooling needs. Both our Cabinet Coolers and our Adjustable Spot Coolers utilize the vortex tube to either cool down an overheated cabinet or provide spot cooling for many different applications including to replace a messy coolant system for small grinding and machining applications.              

If you have questions about Vortex Tubes, or would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.   

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Six Steps to Optimizing Compressed Air: Step 4, Turn it Off When Not in Use

Step 4 of the Six Steps to Optimizing your compressed air is to turn off your compressed air when it is not in use. This step can be done using two simple methods either by using manual controls such as ball valves or automated controllers such as solenoid valves. Manual controls are designed for long use and when switching on and off are infrequent. Ball Valves are one of the most commonly used manual shut offs for compressed air and other fluids.

Automated controllers allow your air flow to be tied into a system or process and turn on or off when conditions have been met. Solenoid valves are the most commonly used automated control device as they operate by using an electric current to open and close the valve mechanism within. Solenoid valves are some of the more versatile flow control devices due to the fact that they open and close almost instantaneously. Solenoid valves can be used as manual controls as well by wiring them to a switch or using simple programming on a PLC to turn the valve on or off using a button.

EXAIR’s Solenoid Valves
EXAIR’s Electronic Flow Controller (EFC)

 

Some good examples of automated controllers are EXAIR’s Electronic Flow Controller (a.k.a. EFC) and EXAIR’s Thermostat controlled Cabinet Coolers.  

The EFC system uses a photo eye to detect when an object is coming down the line and will turn on the air for a set amount of time of the users choosing. This can be used to control the airflow for all of EXAIR’s products. EXAIR’s Thermostat controlled Cabinet Coolers are used to control the internal temperature of a control cabinet or other enclosures. This is done by detecting the internal temperature of your cabinet and when it has exceeded a temperature which could damage electrical components it will open the valve until a safe temperature has been reached, then turn off.    

By turning off your compressed air, whether it be with manual or automated controllers, a company can minimize wasted compressed air and extend the longevity of the air compressor that is used to supply the plants air. The longevity of the air compressor is increased due to reduced run time since it does not need to keep up with the constant use of compressed air. Other benefits include less use of compressed air and recouped cost of compressed air. 

EXAIR’s Ball Valves sizes 1/4″ NPT to 1-1/4″ NPT

If you have questions about our compressed air control valves or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Meet New EXAIR Application Engineer, Dann Woellert

I’m one of the newest to join the team of ‘airheads’ here at EXAIR. By airheads I mean application engineers. These guys have forgotten more about compressed air applications than most will ever know. I’m humbled to join this team of compressed air vigilantes.

The cool thing about the group is that everyone comes from a different industry, and brings a unique perspective to the game. My windy road here has come through a couple of industries – Printing, Restaurant Equipment, Automotive, and Label & Packaging – all of which use the intelligent compressed air devices EXAIR manufactures. Most recently I was a product manager in the roll-fed label industry, which uses Line Vacs to pull waste from slitter and rewinders for collection. We also used Super Ion Air Knives to reduce static when marrying silicon coated plastic liner to the label face stock. It’s important to have a consistent pull on the waste so that clean slits can be made in the product. That’s important downstream to the printer and label converters, and even further to the end user who places the finished label on a bourbon bottle.

I’ve also seen the value of Cabinet Coolers a in hot manufacturing environment, where temperatures over 110 degrees could shut down a panel faster than you can say lost profits. One of EXAIR’s latest products, the Soft Grip Super Air Scraper would also be invaluable to operators who clean out the attritors, which mix dried pigment into viscous varnish.

I’ve been impressed with the positive team attitude here at EXAIR that clearly flows into product design and our go-to-market. I’m also amazed at the creative wizardry of our marketing team to create product images for our promotional content. If a picture is worth a thousand words, EXAIR’s are worth a factor more. Then there’s the videos presented in this blog by the team of airheads. While none of us has a degree in filmmaking from NYU, the App Engineering department creates incredible videos to help customers understand the intricacy and design of EXAIR products.

With a full team of application engineers ready to offer real time support through online or phone chat, EXAIR takes a B2B experience and makes it seem like a true B2C personal experience.

Out of work I’m a food and history geek. I enjoy travelling the region looking for the weirdest and most unique dishes. I am told there’s a Sharonville Superfecta – four signature dishes from local diners – that I need to try. There’s the Bronx Bomber pizza, a gyro from Athenian Greek Diner, a Sammy Burger, and a float from the Root Beer Stand. I’ve recently taken on a side hobby of fermenting my own sauerkraut and hope to have a supply ready soon.

I look forward to embracing the flow and helping you solve your applications with EXAIR’s robust family of intelligent compressed air products.

Dann Woellert
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_DW

Factors When Sizing a Cabinet Cooler System

Heat can cause real problems for electrical and electronic components, in a hurry…we all know that.  Fortunately, we can also specify the right Cabinet Cooler System for you in a hurry too.  And since we keep them all in stock, we can get it to you in a hurry as well.

You can access our Cabinet Cooler Sizing Guide online, here.  You can fill in the blanks and submit it, or you can call in your data.  We do it over the phone all the time, and it only takes a minute.  Here’s what we’re going to ask for, and why:

NEMA 4 Cabinet Cooler
  • Enclosure dimensions.  We need the length, width, and height of your enclosure to calculate the heat transfer surface, and the volume of the enclosure.
  • Current Internal Air Temperature.  How hot is it inside your enclosure?  This is the starting point for figuring out the internal heat load…how much heat the components inside the box is generating.  This needs to be the air temperature – don’t use a heat gun, or you’re going to give me the surface temperature of something that may or may not be close to what I need.  Just put a thermometer in there for a few minutes.
  • Current External Air Temperature.  How hot is it in the area where the enclosure is located?  We’re going to compare this to the internal air temperature…the difference between the two is actually proportional to the heat load.  Also, if there’s anything cooling the enclosure right now (like circulating fans; more on those in a minute,) this reading is key to figuring out how much heat they’re removing.
  • Maximum External Air Temperature.  How hot does it get in the area on, say, the hottest day of summer?  We’ll need this to calculate the external heat load…how much heat the enclosure picks up from its surroundings.
  • Maximum Internal Temperature Desired.  Most electrical and electronic component manufacturers publish a maximum operating temperature of 104F (40C) – it’s kind of an “industry standard.”  Based on this, a lot of us in the enclosure cooling business set our products’ thermostats to 95F (35C) – if we’re maintaining the air temperature a decent amount cooler than the components are allowed to get, history and practice has shown that we’re going to provide more than adequate protection.  If your enclosure houses something with more sensitive temperature limitations, though, we can work with that too…that’s the only time you’re going to want to put something other than 95F (35C) in this field.
  • Cabinet Rating.  This is all about the environment…we offer three levels of protection, per NEMA standards:
    •  NEMA 12 – oil tight, dust tight, indoor duty.
    • NEMA 4 – oil tight, dust tight, splash resistant, indoor/outdoor duty.
    • NEMA 4X – oil tight, dust tight, splash resistant, corrosion resistant, indoor outdoor duty.

                     The NEMA rating does not affect the cooling capacity at all.

  • Other:  If the enclosure is mounted to the side of a machine, or a wall in the plant, you really don’t need to put anything here.  If it’s outside and exposed to direct sunlight, tell us what the surface finish (i.e., polished metal, painted grey, etc.) is so that we can account for solar loading too.  If anything else is unusual or peculiar about the application, let us know that too.
  • My Cabinet Is…Not Vented, Vented, Wall Mounted, Free Standing, Fan(s).  We’ll use what you tell us here to verify heat transfer surface (a wall mounted cabinet’s back surface isn’t a radiating surface, for example.)  Also, I mentioned fan cooling before, so without further ado…
  • Fan diameter or SCFM.  If there are fans circulating air into (and/or out of) the enclosure, they’re providing a finite amount of cooling right now.  Proper installation of a Cabinet Cooler System is going to require their removal.  Running a Cabinet Cooler System on a vented enclosure is just like running your air conditioner with the windows open.  So, if we know the size (or the SCFM…sometimes there’s a label on those fans, and we LOVE those folks who do that) then we can use that, and the temperatures you gave us above, to take the fan cooling into account.

Once we have all this information, it’s down to the math. Like I said, we do this all the time (especially during “Cabinet Cooler Season”) – give me a call.  Your heat problem isn’t waiting; why should you?

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on FacebookTwitter: @EXAIR_JS





EXAIR Cabinet Cooler Systems – How Do they Work?

Cabinet Cooler systems eliminate heat related problems by providing a temperature controlled environment inside of electrical enclosures. Typically set to maintain 95F (but also adjustable) a Cabinet Cooler system can withstand harsh, remote environments with little maintenance. They cool heat loads up to 5600 Btu/Hr and are UL listed to maintain your cabinet’s NEMA integrity. 

Compressed air enters the vortex tube powered Cabinet Cooler and is converted into two streams, one hot and one cold. Hot air from the vortex tube is muffled and exhausted through the vortex tube exhaust. The cold air is discharged into the cabinet through the included cold air distribution kit. The displaced hot air in the cabinet rises and exhausts to atmosphere through the cabinet cooler body. The control cabinet is both cooled and purged with cool, clean air. Outside air is never able to enter the control panel.

sl17_Nema4
How it works! 

EXAIR’s compressed air operated, Cabinet Cooler Systems are a low cost, reliable way to cool and purge electronic control panels. There are no moving parts to wear out and no filters to replace, eliminating the need for constant monitoring.

NEMA Type 12 (IP54) and NEMA 4 and 4X (IP66) models are available that are very compact and mount in just minutes through an ordinary electrical knockout.

Cabinet Cooler Family
EXAIR Cabinet Cooler Sizes 

Available in a wide range of cooling capacities, ranging from 275 Btu/hr. for our smallest system, up to 5,600 Btu/hr. for our largest Dual System.

Thermostat control systems are the most efficient way to operate a Cabinet Cooler as they limit compressed air use by operating only when the temperature inside the enclosure approaches critical levels. Continuous Operating Systems are recommend when constant cooling and constant positive pressure inside the panel is required.

Thermostat controlled Cabinet Cooler Systems are the best option when experiencing fluctuating heat loads caused by environment or seasonal changes. Thermostatically Controlled Systems include a Cabinet Cooler, adjustable thermostat, solenoid valve, cold air distribution kit consisting of tubing and self adhesive clips to duct the cold air inside the panel and a filter separator to remove any water or contaminants from the supply.

Thermostat and ETC

If you would like to discuss our cabinet cooler systems or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on FacebookTwitter: @EXAIR_JS

EXAIR Cabinet Cooler Eases Maintenance Schedule, Replaces A/C System for Beverage Manufacturer

CC_Actionshot

During a recent visit with our distributor in Lima, Peru I had the pleasure of visiting a beverage manufacturing facility to discuss EXAIR’s Cabinet Coolers. They have several panels throughout the facility with A/C units installed. A lack of adherence to scheduled maintenance was causing the filters to clog and restrict the cooling power of the A/C unit. Due to staffing issues, their maintenance department was very thin and regular maintenance items were getting missed.

When the filters would clog, the panels would overheat and stop production. Their solution was to open the panel up and blow fans on them, forcing even more dust into the enclosure. In their search for an alternative solution, they came across EXAIR’s Cabinet Cooler Systems and reached out to our distributor. The A/C unit that was installed on the panel had a capacity of 800W (2,728 Btu/hr). EXAIR offers a 2,800 Btu/hr system from stock that matched up perfectly for them.

They installed a Model 4340-24VDC Nema 12 Cabinet Cooler System with 24VDC thermostat control and removed the A/C system. With no moving parts and no refrigerants, there’s absolutely no maintenance required. Just set it and forget it! The Cabinet Cooler has kept the electronics inside at 95°F, preventing any potential for heat related shut downs. Since all Cabinet Coolers must be installed onto a sealed enclosure, there is no need for filters on the enclosure to prevent dirty ambient air from entering. They’re now working to replace each of the A/C units in the facility with an EXAIR Cabinet Cooler.

EXAIR manufactures Cabinet Coolers for any industrial environment. Cabinet Coolers maintain Nema 4, Nema 4X, and Nema 12 integrity on the enclosure and are also UL Listed and CE Compliant. For applications that may be in a classified area, the Hazardous Location Cabinet Cooler has been approved by UL for use in Class 1 Div 1 – Groups A, B, C, and D; Class II Div 1 – Groups E, F, and G; and in Class III areas. Cooling capacities as high as 5,600 Btu/hr can be achieved with one of our Dual Cabinet Cooler Systems.

Stop wasting precious time maintaining you’re A/C systems, or dealing with heat related shutdowns and get a Cabinet Cooler on order today. Fill out the sizing guide online, and one of our Application Engineers will be in touch to provide you with the most suitable model for your application. Act fast, the current Cabinet Cooler promotion expires at the end of August!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

EXAIR Cabinet Cooler Systems: Thermostats and Accessories

For most industrial enclosure cooling applications, a temperature of 95°F (35°C) is sufficient to be below the rated maximum operating temperature of the electrical components inside the cabinet. So, it is important to turn the cabinet cooler system on to keep the components cool, but at the same time we all know compressed air can be expensive if you over use it. A thermostat allows you to turn the cooler off when the enclosure is at or below the desired temperature, saving compressed air over continuous operation.

Cabinet Cooler

Here at EXAIR we are all about Engineered Solutions that will not only save you money but help your company “Go Green” by drastically lowering your energy costs. And when it comes to Cabinet Coolers, we have several options to control and manage the compressed air supply.

The most popular option is our Thermostat Control. EXAIR thermostats feature a bimetallic contact strip to open and close the electrical circuit in response to air temperatures.  These thermostats quickly respond to changes in air temperature and are specifically suited for their intended use.  Preset for 95°F (35°C), a suitable temperature for most electronic devices, these thermostats are fully adjustable for specific application needs. When thermostat closes it then turns the solenoid valve off turning the compressed air supply off. These thermostats are available in 12VAC, 240VAC and 24VDC.

Thermostat and ETC

In the event a more sophisticated thermostat control is needed, Electronic Temperature Control units can be implemented.  These standalone units utilize a thermocouple to determine internal cabinet temperatures which display onto a digital readout.  Push-button controls on the digital readout board allow for easy modification of the internal cabinet temperature set-point.  When the desired internal temperature is reached, the Cabinet Cooler system will turn off automatically.

One accessory that will give the flexibility to install EXAIRS cabinet cooler system is our Side Mount Kit. Sometimes there isn’t room above an electrical panel to fit the Cabinet Cooler, even though it takes just 5″ to 7.25″ of space above. In these cases, the Side Mount Kit is available to handle any of the Cabinet Cooler sizes and NEMA ratings. The NEMA 4 and 4X Cabinet Coolers must be mounted vertically for the unit to properly resist the ingress of liquids and maintain the integrity of the cabinet NEMA rating.

EXAIR NEMA 12 Cabinet Cooler System w/ Side Mount Kit
NEMA 12 Cooler with Side Mount Kit

The Side Mount Kits install into a standard electrical knockout (1-1/2 NPS) for easy installation.

If you’re in need of a suitable cooling solution for an industrial enclosure, consider an EXAIR Cabinet Cooler systems.  They’re smaller than traditional AC units, faster to install, and require little-to-no-maintenance.  Feel free to contact an EXAIR Application Engineer with any questions, or fill out our online Cabinet Cooler Sizing Guide to have an Application Engineer contact you.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS