Vortex Tubes Cool a UV Scanner

Copper smelting furnace

Safety is important when it comes to gas furnaces; and with large ovens, equipment is used to protect workers and equipment.  A copper company was using natural gas for smelting, and they had a UV scanner to monitor the flames.  If the burners go out, the scanner will turn off the gas valves to stop a potential explosion.   As with many instruments, it is important to keep the electronics cool for proper measurements.  In this case, they were having issues with accuracy from the high heat.  They contacted EXAIR for a solution. 

Air path flow for UV scanner

With their UV scanner, it was designed for a “cooling” device already.  This was basically compressed air that would blow around the instrument.  Because of the location, the compressed air was heating up to 125oF (52oC).  This heat would not cool the scanner properly, and it was causing unreliable readings and premature shutdowns.  They gave me the design specifications, and the scanner required 3.2 SCFM (90 SLPM) of air at atmospheric pressure with a maximum of 77oF (25oC).  I mentioned that we had the perfect solution to keep the UV scanner cool and operational; the EXAIR Vortex Tube.   This product can take elevated temperatures of compressed air and reduce it to lower temperatures.   It is a low cost, reliable, maintenance-free solution that uses compressed air to produce cold air as low as -50oF (-46oC).  With a range of cooling capacities from 135 BTU/hr to 10,200 BTU/hr, I was sure that we could meet the requirements for proper cooling. 

To determine the correct size, I had to look at the temperature drop and the flow requirement.  The temperature had to decrease from the 125oF (52oC) incoming compressed air to at least 77oF (25oC).  This would equate to a 48oF (27oC) temperature drop.  The other requirement was the amount of air flow, 3.2 SCFM (90 SLPM).  With the chart below, I see that we are able to get a 52oF (29oC) temperature drop at a 70% Cold Fraction and 40 PSIG (2.8 bar) inlet pressure.  EXAIR Vortex Tubes are very adjustable to get different outlet temperatures by changing the inlet pressure and the Cold Fraction.  The Cold Fraction (CF) is the amount of air that will be coming out the cold end.  With a 70% CF, that means that the adjusting screw on the hot end of the Vortex Tube is turned to allow 70% of the incoming compressed air to go out the cold end.  So, with that information, we can size to the correct model. 

In comparing the above information to the catalog data at 100 PSIG (6.9 bar), we have to consider the difference in absolute pressures.  With an atmospheric pressure of 14.5 PSIG (1 bar), the equation looks like this:

Qv = (Qc / CF) * (Pc + 14.5 PSIA) / (Ps + 14.5 PSIA)

Qv – Catalog Vortex Tube flow (SCFM)

Qc – Cold Air Flow (SCFM)

CF – Cold Fraction

Pc – Catalog Pressure – 100 PSIG

Ps – Supply Pressure – PSIG (Chart above)

From this equation, we can solve for the required Vortex Tube: 

                Qv = (3.2 SCFM / 0.7) * (100 + 14.5 PSIA) / (40 + 14.5 PSIA) = 9.6 SCFM. 

In looking at the catalog data, I recommended our model HT3210 Vortex Tube which uses 10 SCFM of compressed air at 100 PSIG.  The HT prefix is for our High Temperature models for use in temperatures in the range of 125oF to 200oF (52oC to 93oC).  So, after installing, the Vortex Tube was able to supply 73oF (23oC) air at a flow of 3.3 SCFM (94 SLPM); keeping the UV scanner reading correctly and accurately. 

Sometimes compressed air by itself is not enough to “cool” your instruments.  The EXAIR Vortex Tubes can reduce the temperature of your compressed air to very cold temperatures.  If you believe that your measuring equipment is being affected by elevated temperatures like the company above, you can contact an Application Engineer at EXAIR to find the correct solution for you. 

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

The History of the Man Behind the Friendly Little Demon

James Clerk Maxwell was born in Edinburgh Scotland on June 13, 1831 and from the age of three years old he was described as have an innate sense of inquisitiveness. In 1839 at the young age of 8 years old James’ mother passed away from abdominal cancer which put the boy’s father and father’s sister-in-law in charge of his schooling. In February of 1842 James’ father took him to see Robert Davidson’s demonstration of electric propulsion and magnetic force; little did he know that this event would strongly impact on his future.

Fascinated with geometry from an early age James would go on to rediscover the regular polyhedron before he was instructed. At the age of 13 James’ would go on to win the schools mathematical medal and first prize in both English and Poetry.

Later in his life James would go on to calculate and discover the relationship between light, electricity, and magnetism. This discovery would lay the ground work for Albert Einstein’s Special Theory of Relativity. Einstein later credit Maxwell for laying the ground work and said his work was “the most profound and the most fruitful that physics has experienced since the time of Newton.”. James Maxwell’s work would literally lay the ground work for launching the world into the nuclear age.

Starting in the year 1859 Maxwell would begin developing the theory of the distribution of velocities in particles of gas, which was later generalized by Ludwig Boltzmann in the formula called the Maxwell-Boltzmann distribution. In his kinetic theory, it is stated that temperature and heat involve only molecular movement. Eventually his work in thermodynamics would lead him to a though experiment that would hypothetically violate the second law of thermodynamics, because the total entropy of the two gases would decrease without applying any work. His description of the experiment is as follows:

…if we conceive of a being whose faculties are so sharpened that he can follow every molecule in its course, such a being, whose attributes are as essentially finite as our own, would be able to do what is impossible to us. For we have seen that molecules in a vessel full of air at uniform temperature are moving with velocities by no means uniform, though the mean velocity of any great number of them, arbitrarily selected, is almost exactly uniform. Now let us suppose that such a vessel is divided into two portions, A and B, by a division in which there is a small hole, and that a being, who can see the individual molecules, opens and closes this hole, so as to allow only the swifter molecules to pass from A to B, and only the slower molecules to pass from B to A. He will thus, without expenditure of work, raise the temperature of B and lower that of A, in contradiction to the second law of thermodynamics.

Here at EXAIR we are very familiar with Maxwell’s “friendly little demon” that can separate gases into a cold and hot stream. His thought experiment, although unproven in his life time, did come to fruition with the introduction of the Vortex Tube.

Vortex Tube a.k.a Maxwell’s Demon

With his birthday being last weekend I propose that we raise a glass and tip our hats to a brilliant man and strive to remember the brilliant ideas that he gave us.

If you have any questions or want more information on EXAIR’s Cabinet Coolers or like products. Give us a call, we have a team of application engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook


Choosing Max Refrigeration Or Max Cold Temp Vortex Tubes

Vortex Tubes have been studied for over 90 years. These “phenoms of physics” and the theory behind them have been discussed on this blog before. But, when it comes to the practical use of a Vortex Tube it is good to discuss how to correctly select the model that may be needed in your application. The reason being, there are different flow rates and an option for maximum refrigeration or maximum cold temperature.

The tendency is to say, well I need to cool this down as far as possible so I need the coldest air possible, give me the maximum cold temperature. More times than not, the maximum cold temperature model is not the best solution for your application because maximum cooling power and maximum cold temperature are not the same thing.  A maximum cold temperature Vortex Tube is best for spot cooling processes that require greater than 80F temperature drop covering a small area – spot cooling at its finest. Theis very cold air is delivered in a low volume. A maximum cooling power Vortex Tube is the best mix of cold temperature and volume of flow. This cold air (50F-80F temperature drop) is delivered at higher volumes which has the ability to remove more heat from certain processes. If you do not know which is bets for your application, follow these next steps. 

The first step, is to call, chat, or email an Application Engineer so that we can best outfit your application and describe the implementation of the Vortex Tube or spot cooling product for you. You may also want to try and take some initial readings of temperatures. In a perfect world you would be able to supply all of the following information to us, but recognizing how imperfect it all is…some of this information could go a long way toward a solution. The temperatures that would help to determine how much cooling is going to be needed are listed below:

Part temperature:
Part dimensions:
Part material:
Ambient environment temperature:
Compressed air temperature:
Compressed air line size:
Amount of time desired to cool the part:
Lastly desired temperature:

With these bits of information, we can use standard cooling equations to determine what temperature of cold air stream and volume of air is needed in order to produce the cooling and your desired outcome. To give an idea of some of the math we have used, check out this handy educational video of how Newton’s law of cooling was used to calculate the amount of time it takes to cool down a room temp beverage in an ice cold refrigerator. 

If you would like to discuss a cooling application, heating application, or any point of use compressed air application, contact an Application Engineer today.

Brian Farno
Application Engineer

1 – ThinkWellVids – Newton’s Law of Cooling – Feb. 27, 2014 – retrieved from https://www.youtube.com/watch?v=y8X7AoK0-PA

Ultraviolet Curing and Vortex Tube Cooling

Recently EXAIR worked on a project to cool down parts that were using Ultraviolet (UV) light to cure a surface coating. Ultraviolet curing is a photochemical process that uses UV light to cure/dry certain inks, coatings, and adhesives. Due to the fact that UV light produces a good amount of heat the product would heat up during the curing process and create issues for them down the line which slowed down production in order let them cool. The simple solution to this was the use of the vortex tube to blow on the product to cool it down during the process. By doing so they were able cool the product down to a suitable temperature for the process to speed up.

EXAIR’s Small, Medium, and Large Vortex Tubes

EXAIR’s Vortex Tubes are great for cooling down surfaces to temperatures below ambient thanks to the cold air stream that is produced from the vortex tube. Vortex tubes use a source of compressed air to create both a hot and cold stream of air simultaneously which allows the unit to be used for cooling but also heating applications. The amount of air flow coming out of either end of the Vortex Tube can be controlled; by doing so one can adjust the temperature of the air streams coming out.

There are numerous methods to distribute the cold air flow from a lone, or a series of, Vortex Tubes.

Although the main application for the Vortex Tube is to be used for cooling, it is occasionally used to heat as well. Heating applications are uncommon, but they are still possible. Since a vortex tube creates a cold and hot stream of air; by controlling what the fraction of air is flowing out of the cold end you can create a temperature rise (a rise from the starting air temp) of up to 195F! Now that is hot.

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook