EXAIR Line Vac Promotion Thru October 2017!

EXAIR will be giving away a free 2” Super Air Nozzle with the purchase of any EXAIR Line Vac from September 1st through October 31st, 2017.  This special promotion will apply to all versions of Line Vac orders, whether aluminum, stainless steel, heavy duty, threaded/non-threaded, or 316SS sanitary flanged.  Order within the promotional period and receive the free model 1122, a value of $65.00! The 2″ Flat Super Air Nozzle is more durable than plastic flat nozzles, operates at lower noise levels and produces a powerful blast of compressed air in a laminar sheet.

EXAIR’s Line Vac family

Line Vacs provide a fast, easy way to pneumatically transfer dry materials from one location to another.  They eliminate the need to have personnel manually transferring materials via bag, super sac, or bucket-and-ladder setups.  Doing so reduces worker fatigue and allows conveyance to occur simultaneously with other process operations.

Line Vac removing trimmed scrap from label making application

What kind of an impact can this have?  Here’s a link to a recent blog post where an EXAIR Line Vac saved the end user from having to shut down their conveyor to allow cleaning of spilled material underneath.  And here’s a link to an application using Line Vacs to empty and refill a large tank full of desiccant.  And here’s a link to an application where we customized a Line Vac for conveyance of dog bedding material.  You get the idea…

Depending on application parameters such as bulk density of the material (lbs/ft³ or kg/m³), conveyance height/distance, and required conveyance rate, we can size a Line Vac properly through the support of our Application Engineers who have years of experience working with these products and their implementation into industrial solutions.

The EXAIR Line Vac Promotion – now through October 31st

We’re here to help you find a pneumatic conveyance solution for your application, and earn a free nozzle in the process.  Contact our Application Engineers for assistance today.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

EXAIR Provides Same Day Solutions For Customers In Need

Solving customer problems by shipping product the same day is a common occurrence at EXAIR. Here is another example.

 

EXAIR Cabinet Cooler installed on a control panel in a distribution center for hygienic products.

As companies grow and add more personnel, the details of projects and solutions can get lost if not recorded well.  Newer employees may not have knowledge of solution specifics, and unknown details can be hard to discover, especially in larger organizations.  An example of this happened recently when one of our customers contacted me about the Cabinet Cooler shown in the image above.

The NEMA 12 Cabinet Cooler was working flawlessly and had been for some time.  As temperatures rose, however, other machines in this facility began to experience overheating conditions leading to machine downtime, decreased throughput, and increased stress on operations personnel.

One of the maintenance workers noticed that the cabinet with the EXAIR Cabinet Cooler was functioning properly, so they did a quick Google search of the product.  They were met with numerous postings about the theory of operation for Cabinet Coolers and Vortex Tubes, how-to videos for installation/thermostats/side mount kits, and our blog site with countless application solutions provided by our products.

Figuring they’d found the right place, they reached out to me via email and shared their story.  And, what they ultimately needed from me was help identifying which Cabinet Coolers they had on hand to mimic the solution in other, identical machines.

Another angle of the Cabinet Cooler in this application.

Thankfully they provided the image above, which shows a label near the compressed air inlet designating the compressed air consumption (at 100 PSIG).  (See below)

The critical piece of information we needed to determine the model number of this Cabinet Cooler (in the red circle).

Based on this label and the dimensions of the Cabinet Cooler, I was able to identify this as our model 4025 NEMA 12 Cabinet Cooler, which is part of the larger, complete system model 4325.  After providing the model number, price, and availability, this customer was able to order the needed Cabinet Coolers which were shipped the same day.

Shipping solutions from stock is an everyday thing here at EXAIR.  If you’re in need of a solution for cooling, cleaning, conveying, removing static, or coating contact an EXAIR Application Engineer.  We can help you solve your problem – TODAY!

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Video Blog: The Monetary Benefits of an Engineered Solution

This video highlights the value and benefits of an engineered blow off solution.  We take a homemade open pipe blowoff and replace it with an EXAIR model 1100 Super Air Nozzle.  This air nozzle is then controlled through our Electronic Flow Controller, allowing for intermittent On/Off of the compressed air flow.  And, these solutions are wirelessly monitored via Zigbee network using our Wireless Digital Flowmeter.  Implementing these solutions results in a compressed air reduction of over 90%!!!

 

Full calculations along with supporting flow values (pulled from the same data shown in the video above) are shown below.

Screengrab of the flow values shown in the video above. Click for larger image.

The open pipe:

The first compressed air flow values to show up on the EXAIR Logger are for the open pipe blow off.  At 1 BAR operating pressure, this “solution” consumes 22.3 SCFM of compressed air.  At a cost of $0.25 for every 1,000 cubic feet of compressed air, this nozzle will cost $695.76 to operate 8 hours per day, 5 days per week, 52 weeks per year.

The engineered EXAIR Super Air Nozzle

Model 1100 EXAIR Super Air Nozzles consumes 4.7 SCFM at an operating pressure of 1 BAR – a reduction of 79% compared to the open pipe.  These savings prove out in terms of operating cost as well – $146.64 per year, compared to $695.76.

The engineered EXAIR Super Air Nozzle with Electronic Flow Control (EFC)

By controlling the “ON” time for this application with an EFC, we are only blowing for 32% of the time for each minute of operation which changes the required compressed air flow from 4.7 SCFM to a peak value of 1.5 SCFM. This control saves an additional 68% of compressed air flow.  And, these savings are compounded by eliminating the need for constant compressed air flow.  Total annual operating cost for the EXAIR 1100 Super Air Nozzle with Electronic Flow Control is just $46.80.

Implementing an engineered solution can have a TREMENDOUS impact on energy costs and operating costs in your facility.  Compressed air is the most expensive utility to produce and consume, making the impact of proper solutions of high value to any business.  Let us help you utilize engineered compressed air solutions in your facility by contacting an EXAIR Application Engineer today.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

About Single Acting Reciprocating Compressors

Whether you’re new to the field of compressed air, an experienced technician, or just in the market for a new compressor, you may find yourself coming into contact with various compressor types.  Within the world of compressed air supply there are two types of compressors: positive displacement and dynamic.  These two compressor types branch off into several different variations, as shown in the chart below.

Compressor types

Positive displacement compressors increase air pressure by reducing air volume within a confined space.  In a positive displacement compressor mechanical linkage is used to reduce the volume of air (the fluid), which results in a change to the air pressure.  To think of it another way, the energy which is used to displace the air volume is converted into an increase in air pressure.

Dynamic compressors, on the other hand, utilize an increase in air velocity to cause a change in air pressure.  For a dynamic compressor, the fluid (air) is accelerated to a high velocity through a rotor or impeller.  The kinetic energy of the air is then converted to an increased potential energy/static pressure by slowing the flow through a diffuser.  The air at the outlet of the diffuser is the compressed air which is used to perform work.

The internals of a single acting reciprocating compressor.

Within this vast field of compressed air generation, one of the most common types of compressors is the single acting reciprocating compressor.  The term “single acting” refers to manner in which the cylinder inside of the compressor motor interacts with the working fluid (the air).  When the fluid (air) acts only on one side of the piston, the motor is referred to as “single acting”.  This type of motor relies on the load of the motor, a flywheel, springs, other cylinders, or some other device/momentum to return the piston back to its original location.

Single acting compressors can be air-cooled or water cooled, lubricated or non-lubricated, and packaged to provide a wide range of pressure and flow capacities.  Because of this adaptability, single acting compressors are quite common and serve a variety of industrial needs.

No matter the type of compressor on the system’s supply side, having engineered products on the demand side improves overall system performance and efficiency.  If you’d like to discuss engineered solutions for your compressed air system, EXAIR Application Engineers are ready and waiting.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

 

Compressor internals image courtesy of h080, Creative Commons License.

Non-Hazardous Purge Cabinet Cooler Solves Two Problems At Once

Electrical control panel above belt press machine

The image above shows an electrical panel located over a belt press machine.  Belt press machines can be used in a variety of mechanical separation applications, from juice manufacturing to de-watering of grains, and even algae extraction.  The use in this application, however, was to assist in the removal of liquid from styrene via multiple “wedge zones” which force the styrene between an upper and lower belt, applying increasing pressure and forcing the liquid from the styrene roll.

The Plant Manager of the facility which uses this cabinet contacted EXAIR in search of a solution to provide cooling for this enclosure, and wanted to know if we could also provide some means to provide a constant ventilation as well.  We discussed the merits of the Cabinet Cooler in terms of cooling power, and also discussed our Non-Hazardous Purge Cabinet Cooler systems which provide a constant feed of 1 SCFM of compressed air into an enclosure.  This slight airflow into the cabinet provides a slight positive pressure which further helps to prevent any dust from entering the cabinet.  For older cabinets with potentially weakened seals, these systems can provide an added level of protection against harmful dust in the ambient environment.

After sending a Cabinet Cooler Sizing Guide and determining the proper model number (NHP4825), the customer asked about lead time.  They said that the machine was intermittently shutting down and they needed something FAST.  I informed them that EXAIR Cabinet Coolers ship from stock and we can even ship UPS Next Day Air if need be.

Knowledgeable engineering support coupled with a shoe-in solution and on-the-shelf availability got this application under control quickly.  If you’re having a similar experience with your electrical control panels, contact EXAIR’s Application Engineering department for a similar solution experience.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Vortex Tube Cold Fractions – An Explanation

Vortex Tube Family

At EXAIR we’ve been a pioneer in the compressed air market for the past 34 years.  We’ve brought engineered nozzles to the market which reduce compressed air consumption while maintaining performance, laminar flow Air Knives, pneumatic conveyors, atomizing nozzles, air-assisted static eliminators, and a slew of other products.  One of these “other” products is our Vortex Tube, which we manufacture in various sizes while also using as a basis for our Cold Guns, Adjustable Spot Coolers, Mini Coolers, and Cabinet Coolers – all of which are built on the same Vortex Tube technology.

Theory of operation for an EXAIR Vortex Tube

The principle behind a Vortex Tube is rooted in the Ranque-Hilsch effect which takes place inside of the tube.  As a compressed air source is fed into the Vortex Tube, the air flows through a generator and begins to spin down the length of the tube, “hugging” the ID of the tube.  When this spinning air contacts a deliberate obstruction at the end of the tube, it is forced to reverse directions, which requires a change in diameter to the vortex.  The original vortex must decrease in diameter, and in order to do so, it must give off energy.  This energy is shed in the form of heat, and a portion of the incoming air is directed out of the tube with a drastically reduced temperature via what is called the “cold end”.  Another portion of the air escapes through the “hot end” of the tube, resulting in a cold airflow at one end, and a hot airflow at the other end of the tube.

Small, but powerful, Vortex Tubes really are a marvel of engineering.  And, like most useful developments in engineering, Vortex Tube technology begs the question “How can we control and use this phenomena?”  And, “What are the effects of changing the amount of air which escapes via the cold end and the hot end of the tube?”

EXAIR Vortex Tube Performance Chart

These answers are found in the understanding of what is called a cold fraction.  A cold fraction is the percentage of incoming air which will exhaust through the cold end of the Vortex Tube.  If the cold fraction is 80%, we will see 80% of the incoming airflow exhaust via the cold end of the tube.  The remaining airflow (20%) will exhaust via the hot end of the tube.

For example, setting a model 3210 Vortex Tube (which has a compressed air flow of 10 SCFM @ 100 PSIG) to an 80% cold fraction will result in 8 SCFM of air exhausting via the cold end, and 2 SCFM of air exhausting through the hot end of the Vortex Tube.  If we change this cold fraction to 60%, 6 SCFM will exhaust through the cold end and 4 SCFM will exhaust through the hot end.

But what does this mean?

Essentially, this means that we can vary the flow, and temperature, of the air from the cold end of the Vortex Tube.  The chart above shows temperature drop and rise, relative to the incoming compressed air temperature.  As we decrease the cold fraction, we decrease the volume of air which exhausts via the cold end of the Vortex Tube.  But, we also further decrease the outlet temperature.

This translates to an ability to provide extremely low temperature air.  And the lower the temperature, the lower the flow.

Red box shows the temperature drop in degrees F when an EXAIR Vortex Tube is operated at 100 PSIG with an 80% cold fraction.

With this in mind, the best use of a Vortex Tube is with a setup that produces a low outlet temperature with good cold air volume.  Our calculations, testing, and years of experience have found that a cold fraction of ~80% can easily provide the best of both worlds.  Operating at 100 PSIG, we will see a temperature drop of 54°F, with 80% of the incoming air exiting the tube on the cold end (see red circle in chart above).  For a compressed air supply with a temperature of 74°F-84°F (common compressed air temperatures), we will produce an output flow with a temperature between 20°F and 30°F – freezing cold air!

With a high volume and low temperature air available at an 80% cold fraction, most applications are well suited for this type of setup.  When you order a Vortex Tube from EXAIR we will ship it preset to ~80% cold fraction, allowing you to immediately install it right of the box.

The cold air from an EXAIR Vortex Tube is effective to easily spot cool a variety of components from PCB soldering joints to CNC mills, and even complete electrical control panels.  Contact an Application Engineer with application specific questions or to further discuss cold fractions.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

EXAIR Cabinet Cooler vs. Air-To-Air Heat Exchanger

The EXAIR Cabinet Cooler family.

At EXAIR we’ve been providing enclosure cooling solutions for decades, and in many cases those cooling solutions have remained in place for decades as well.  In the time we’ve been in the market with industrial enclosure cooling solutions we’ve encountered a number of alternative means for enclosure cooling.  One of those methods is an air-to-air heat exchanger.

An air-to-air heat exchanger uses the temperature differential between the ambient air surrounding an enclosure and the hot air inside an enclosure to create a cooling effect.  A closed loop system exchanges the heat inside the enclosure with the outside air in an effort to maintain a set internal temperature.  The heat exchange of most air-to-air unit relies on a heat pipe, a heat-transfer device which converts an internal refrigerant liquid into vapor by placing one end of the pipe in contact with the hot environment.  The heated vapor travels to the other end of the pipe which is in contact with a cooler environment.  The vapor condenses back into a liquid (releasing latent heat) and returning to the hot end of the pipe and the cycle repeats.  All in all, a clever solution.

But, this type of a solution does give some cause for concern, especially when considering their use in an industrial environment.  Here are the key points to keep in mind when comparing an air-to-air cooler to an EXAIR Cabinet Cooler.

Required temperature differential based on ambient air temp

An air-to-air heat exchange relies on the ΔT between the ambient air temperature and the internal enclosure air temperature to produce cooling.  If this ΔT is low, or the ambient temperature rises, cooling is diminished.  This means that as the temperatures in your facility begin to rise, air-to-air heat exchangers become less and less effective.  Larger air-to-air heat exchangers can be used, but these may be even larger than the enclosure itself.

EXAIR Cabinet Coolers rely on the ΔT between the cold air temperature from the Cabinet Cooler (normally ~20°F) and the desired internal enclosure temperature (normally 95°F).  The cold air temperature from the Cabinet Cooler is unaffected by increases in ambient temperatures.  The large ΔT and high volume cold air flow produced by a Cabinet Cooler results in more cooling capacity.  And, we can increase cooling capacity from a Cabinet Cooler without increasing its physical footprint, which is already much, much smaller than an air-to-air type of unit.

 

Cooling in high temperature environments

High Temperatures are no problem for EXAIR Cabinet Coolers

Due to their nature of operation, an air-to-air heat exchanger must have an ambient temperature which is lower than the desired internal temperature of the enclosure.  If the ambient air has a higher temperature, air-to-air units provide zero cooling.

Cabinet Coolers, on the other hand, can be used in hot, high temperature environments up to 200°F (93°C).

 

Cooling in dirty environments

An EXAIR NEMA 12 Cabinet Cooler in an extremely dirty environment. Still operating after over 7 years, without any maintenance.

Dirt in the ambient environment will impact cooling performance with an air-to-air heat exchanger.  In order for the air-to-air unit to effectively remove heat, the heat pipe must have access to ambient air.  With any exposure to the ambient environment comes the possibility for the ambient end of the heat pipe to become covered in ambient contaminants such as dust.  This dust will create an insulation barrier between the heat pipe and the ambient air, decreasing the ability for the heat pipe to condense the vapors within.  Because of this, most air-to-air devices use filters to separate the heat pipe from the ambient environment.  But, when these filters become clogged, access to ambient temperatures are reduced, and cooling capacity of the air-to-air unit reduces as well.

Cabinet Coolers have no problem operating in dirty environments.  In fact, it is one of their strengths.  Without any moving parts to wear out or any need to contact ambient air for cooling purposes, a dirty environment poses no problems.  In fact, check out this blog post (and this one) about EXAIR Cabinet Coolers operating maintenance free for years in dirty environments.

 

Size and time required to install

Air-to-air heat exchangers vary in size, but even the smallest units can have large dimensions.  Many applications have limited space on the enclosure, and a large, bulky solution can be prohibitive.  Couple this with the time and modification required to the enclosure to install a large air-to-air unit, and the “solution” may end up bringing additional problems.

Another key aspect of the Cabinet Cooler is its size.  Small, compact, and easy to mount on the top or side of an enclosure, Cabinet Coolers install in minutes to remove overheating problems.  Check out this video to see how simple Cabinet Coolers are to install.

Rising ambient temperatures translate to less natural heat transfer into the ambient environment.  As temperatures rise and overheating electrical components becomes a concern, remember EXAIR Cabinet Coolers as a viable solution.  If you have any questions about how an EXAIR Cabinet Cooler can solve problems in your facility, contact an EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

%d bloggers like this: