Dust Suppression with an EXAIR Atomizing Nozzle

img_0378

An EXAIR Atomizing Nozzle used to minimize dust in the feed bowl of a cement mixer.

One of the most difficult aspects of handling and working with dusty materials is suppression of airborne contaminants.  Small particles can easily become a dust cloud, minimizing visibility and decreasing the quality of working conditions.  This then leads to lower productivity, low morale, and a missed opportunity to maximize the potential of personnel and equipment.

Our distributor in New Zealand recently assisted one of their customers facing this set of problems when working with cement and microsilica as it was poured into a mixer.  An exhaust fan was in place, but failed to extract the dust sufficiently, so a new approach was needed to minimize the dust.

 

circle-image

An AN2010SS No Drip Atomizing Nozzle provides the needed dust suppression in this application.

 

The solution was to use an EXAIR AN2010SS No Drip Internal Mix Atomizing Nozzle, shown above in the red box, to produce an atomized water mist.  The dust produced during pouring is captured by the small droplets of atomized water produced with this nozzle, reducing the dust and allowing proper use of the mixer.

 

ssh-image

The 9218 Stay Set Hose positions the atomizing nozzle where it needs to be.

 

In order to position the nozzle exactly where it needs to be, an 18” Stay Set Hose, shown above with the red arrow, was used to position the nozzle.  This hose is built specifically to have “memory” of the desired position, allowing for quick, easy, and repeatable position of the nozzle attached to the hose.

This simple setup is controlled through a timer to ensure water and compressed air use realize maximum efficiency.  It’s an easy solution to a painful problem for this customer.

If you’d like to explore how an EXAIR solution can solve problems in your facility or application, please contact an EXAIR Application Engineer.

 

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Will an EXAIR Vacuum Work with This Material?

img_9239

Activated carbon pellets in need of vacuuming

At the heart of EXAIR’s dry vacuum systems are a modified design to our Line Vac air operated conveyors.  These units convert a compressed air supply into a powerful vacuum source with no moving parts and thus no components to wear out.  This, in turn, translates to an instantaneous vacuum supply that is both durable and maintenance free.

These aspects of our vacuum systems led a pharmaceutical research company in Macau to contact us about using a Heavy Duty Dry Vac in one of their applications.  The complete details of the application were proprietary, but information about the specific use was made available.

What this customer needed to do, was to vacuum activated carbon chips in batches of ~300kg (660 pounds) into a contained drum or bag.  The ultimate question in the application was whether an EXAIR Heavy Duty Dry Vac system can vacuum 300kg of activated carbon.  And, if it can, how long will it take?  To answer these questions we turned to a bit of data about the activated carbon, and the potential vacuuming rate of the Heavy Duty Dry Vac System.

Activated carbon has a bulk density of ~0.52 g/cm³ (~32.5 pounds/ft³), and the Heavy Duty Dry Vac can vacuum this type of material at a rate of ~30kg/min. or more (~66 pounds/min. or more).  This means that we’ll be able to vacuum the full 300kg of activated carbon in ~10 minutes!

But, where will it all go?

If we were to use a 55 gallon Heavy Duty Dry Vac, we could vacuum ~105 kg. (232 pounds) of this material before filling the drum.  But, if we use a 110 gallon system, we will double this capacity while keeping the performance and compressed air demand of the system exactly the same.

The multiple sizes of EXAIR vacuum systems provided a wide array of solution options in this application.  After discussing these options and receiving a request for distributor contact in China, we passed this customer over to our Chinese distributor.

Providing solutions for industrial applications is the forte of EXAIR Application Engineers.  It doesn’t matter if the application is here in the States, or overseas, we’re available for any questions our customers have.

If you’d like to discuss your application with an EXAIR Application Engineer we’re available by phone, email, or online chat.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Finding The Right Solution Through Dedicated Engineering Support

crate

Plastic crate in need of blow off after washing

An OEM of crate washing equipment in Lebanon recently contacted me about an application on one of their conveyors.  The conveyor carries a plastic crate out of a washer and excess water on the crate was presenting a problem in the application.  In order for the crate to move on to the next step in the machine, a blow off solution was needed, but the exit rate from the washer was inconsistent.  In a given minute there could be 5 crates exit the washer, or there could be 20.  So, the ideal solution needed to have intermittent control options with instantaneous on/off functionality.

We immediately began discussing Super Air Knives, not only because we show plastic crate blow off in one of our many videos, but also because these units are instant on/off with full compatibility with a flow control device.  Utilizing a flow controller, such as the EXAIR Electronic Flow Controller or PLC device, will allow for precise control of the blow off solution, limiting compressed air use to a minimum.

2016-12-07_164322

The first blow off system design

2016-12-07_164342

This layout utilizes Air Knives on each side of the blow off as well as the top

After discussing application details we came to the design shown above, using one 24” Air Knife on the top of the crate and two 9” Air Knives on the sides.  However, this OEM had purchased numerous 2” Flat Stainless Steel Super Air Nozzles in the past (model 1122SS) and had a number available on site.  Modifying the system to utilize the nozzles already on-site, we came to this design:

system-layout

The finalized layout for this blow off system. Click for a larger view.

This layout utilizes (1) 24” Stainless Steel Super Air Knife on the top of the crate and (2) sets of (3) 2” Flat Stainless Steel Super Air Nozzles on the sides, held in place with EXAIR Stay Set HosesNotice the independent pressure regulators for the nozzles and the knife.  This is to allow the customer to balance the air flows, because the 2” flat nozzles will create a higher force than the Air Knife when operating at the same pressure.

In this application we were able to help a returning OEM solve their problem with the right mix of needed products.  Exploring the problem and discussing numerous viable solutions led to the best fit for the application and customer.  That’s precisely why EXAIR Application Engineers are available for any application call or question.  If you’d like to explore an EXAIR solution we’ll be happy to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

 

EXAIR Cabinet Cooler in Bahrain Still Operating Years Later, In Harsh Conditions

img-20170110-wa0010

This small NEMA 12 type Cabinet Cooler has been in operation for years. Now, two additional units are needed for new applications.

A few weeks ago I was contacted by a mechanical contractor in Bahrain about a needed Cabinet Cooler.  Their customer had an existing unit in place and needed two more for similar applications.  As with any Cabinet Cooler need, we needed to start with an accurate understanding of the heat load involved, to make sure we recommend the proper model number.

So, we used the Cabinet Cooler Sizing Guide to gather the required information and calculate the heat load of the application.  After using this information to calculate a heat load of 426 BTU/hr. (~125W), we confirmed that the existing model 4308-240 will be the correct fit for the additional cabinets as well.

img-20170111-wa0000

Even in this dirty environment the Cabinet Cooler continues to function.

The existing Cabinet Cooler has been in operation for several years without any required maintenance or upkeep.  Clean compressed air, achieved with a simple 5 micron water/dirt filter separator,  is supplied to the unit and nothing but clean cold air is fed into the cabinet.  Relative humidity is regulated by the Cabinet Cooler to 45% resulting in stable temperatures and humidity for the electronics inside the enclosure.

img-20170110-wa0009

The dirt and debris are prevented from entering the enclosure due to the design of the Cabinet Cooler. Only clean, cold air enters the cabinet. Hot air is vented away.

This application is an excellent example of the durability of EXAIR products.  With proper compressed air supply our products will operate uninterrupted and at proper performance for years.  If you’re in need of a durable solution for an electrical enclosure, contact an EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

EXAIR Super Air Knives Improve Process in an Aluminum Rodding Shop

pile-of-product

Piles of material underneath conveyor in aluminum making process

Recently, one of the world’s largest producers of aluminum initiated a study to determine the costs associated with material spillage in their facilities.  The purpose of their internal investigation was to quantify the time, money, and production losses derived from material spillage and accumulation in their rodding shop (the portion of the aluminum making process in which the anode rods are recycled).  Their findings were astounding.

sak-before

Material buildup underneath conveyor in rodding shop

Underneath the conveyors in the rodding shop were mountains of spilled material.  This material would accumulate to dangerous levels, causing safety hazards for workers to potentially slip or trip, interference with conveyor belt operation, an inability to service the conveyors, and a constant cleaning requirement.  Essentially, the accumulation of material would reduce the lifespan of conveyor components while simultaneously preventing maintenance personnel from being able to service the failed components.

failed-roller-1

Failed rollers, pulled from conveyors in the rodding shop

So, the spilled material would be vacuumed from the affected area, conveyor maintenance would be performed, and then the (vicious) cycle would repeat.

Overall, these spills cost over $85,000 per year in cleaning costs (vacuuming spilled material weekly at a cost of $1,650.00), 7100 minutes of unscheduled downtime loss (the process must be stopped during vacuuming and repair to the conveyors), an increased safety risk due to slips and trips on the spilled material, and reduced life of their conveyor belting, rollers, and pulleys due to operating in bath of rubble and dust.

Finding a solution for this problem was no small matter.  This customer needed a permanent and reliable solution to eliminate the mountains of material underneath their conveyors.  And that solution was to install EXAIR Super Air Knives on the underside of the belts, aimed opposite the direction of belt travel, and aimed toward the dust collection system, as shown below.  Before and after photos of the installation are shown below as well.

sak-installed-underneath-belt

An aluminum Super Air Knife (with plumbing kit from EXAIR) installed on the underside of a conveyor.

sak-before

Seven days of accumulation without the Super Air Knife installed

sak-after-pile-was-there-before

Seven days of accumulation with the Super Air Knife installed. Note: the pile in the background was there from the previous week.

The images above show how the Super Air Knives perfectly solve this problem.  They prevent the accumulation of material underneath the conveyors, eliminating $85,000/year in cleaning costs and 7100 minutes of unscheduled downtime, removing the safety and maintenance concern, and adding longevity to the conveyor components.

Cleaning intervals were revised from daily requirements to an interval up to 12 weeks in some locations.  (The shortest interval was revised from daily to every 3 weeks.)

return-roller

No more of these. This is a failed end roller, replaced after only two weeks in service. Lifespan for conveyor components was greatly improved after the installation of Super Air Knives.

So, the burning question is “How much did this solution cost the end user?”

Total costs to implement this solution were $16,000.00.  Based on the cleaning costs alone, the return on investment for this project was under three months.  When the downtime and additional conveyor maintenance is factored in, ROI is realized even faster, perhaps in under two months.

For EXAIR Application Engineers, thoroughly identifying customer problems and integrating an optimal solution is one of our specialties.  In this case we were able to see the benefits our products can have on a single process, saving the customer tens of thousands of dollars per year.

If you have a problem plaguing your facility and would like to discuss potential solutions using EXAIR products, contact one of our Application Engineers.  We’ll be happy to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

You Might be Freezing, but Your Electronics Can Still Overheat

For those of us in the Northern Hemisphere it can be easy to be overrun by static elimination problems during these winter months.  But, colder outside temperatures don’t always mean cooler temperatures for the electronics used in production processes.

dsc08220

This cabinet was facing unaddressed overheating issues before exploring a Cabinet Cooler solution

I received an email from one of our distributors this week describing two applications with failing electronics (shown above and below).  The root cause of failure for both applications was excessive heat inside the enclosures which house electronic devices, even though the ambient air temperatures weren’t abnormally high.  So, we used the Cabinet Cooler Sizing Guide to determine the heat load of each application and make recommendations for proper Cabinet Cooler model numbers.

dsc08223

This cabinet was also overheating, causing problems in the processes controlled by the components inside the cabinet.

What we found was that the heat load in both cases was rather low, but in each case it was enough to cause the electronics to overheat.  When the temperature of the electronic devices exceeds their specified temperature range, they cease to operate, causing downtime of every device tied to the processes they control.  By installing a Cabinet Cooler onto each enclosure, the overheating problem will be quickly and easily solved.  And, because of the relatively low heat load in this application, a small NEMA 12 type Cabinet Cooler was the perfect solution.

If you have an overheating electrical enclosure, whether during the Winter, Spring, Summer, or Fall, contact an EXAIR Application Engineer.  We’ll be happy to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Solving a Printing Problem with EXAIR Static Eliminators

img_5724

Unrolling plastic into this machine created a static charge throughout the process

One of the most common sources of static electricity in automated processes is friction.  As two (or more) materials move against each other, static is produced due to the triboelectric effect.  By definition, the triboelectric effect is a type of contact electrification in which certain materials become electrically charged after they come into frictional contact with a different material.  If these materials are non-conductive, or if they are not grounded, the static charge will remain.  This was the case for the machine shown above.

img_5723

Multiple stations of this machine, all experiencing static problems

This machine is a Chesnut 150 Gravure Print Station.  It is used for printing, coating, laminating, and sometimes die cutting of paper, light paperboard, films, polyester, flexible packaging and aluminum foil.

In this application, a roll of plastic is dispensed, but a static charge is preventing proper printing on the plastic as it travels from roll to roll.  As the film is separated from the roll, a static charge is produced, and this charge is carried through the process at values ranging from 3,000 – 20,000 volts.  The manager for this production area contacted EXAIR to see if there’s a viable EXAIR solution to remove this static charge.  They were interested in a solution that could eliminate static on the full width of the plastic, could be mounted 200-300mm away from the rollers, and could be replicated at multiple places along the machine.

With this in mind, the best solution was to use a series of 18” Super Ion Air Knives installed periodically along the path of plastic within the machine.  Operating at a low pressure of 1-2 BARG (14.5 – 29 PSIG), the Super Ion Air Knives create an evenly dispersed, quiet airflow of static eliminating ions with a low compressed air consumption.  Using the laminar, static eliminating airflow from the Super Ion Air Knife, this solution can be mounted away from the static charge, allowing the ions to “rain” down on the affected areas.

For this application finding a solution meant finding a method to keep production on schedule.  Without static elimination this machine faced defects, downtime, and decreased efficiency.  Using EXAIR Super Ion Air Knives brought this application back up to optimal operating speeds, keeping the revenue generating process of this manufacturer ongoing.

Colder weather is here and static comes along with it.  If you’re experiencing a static related problem in your facility, contact one of our Application Engineers.  We’d love to help you find a solution.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

%d bloggers like this: