Another Unique Solution in an Aluminum Processing Plant

Fine dust particles needed to be removed from this belt on the underside of a conveyor

A few months back I wrote about the impact of installing Super Air Knives in an aluminum processing plant.  Those Super Air Knives solved a recurring problem with cleaning alumina dust around conveyors and reduced costs for the end user by over $80k.

That same customer has also found a method to remove fine dust from the underside of the conveyor belt in an application area not suitable for an Air Knife.  In this application there was no dust collection system in place to carry away the fines as they are blown off of the belt, so a different type of solution was needed.

Model 150200 Heavy Duty Line Vac provides the vacuum needed to remove the dust fines.

That solution was to install a Heavy Duty Line Vac affixed to a vacuum hood to remove fines from the belt and convey them back to the head chute.  The only problem with this setup was that the 2” Heavy Duty Line Vac produced a bit too much vacuum flow than what was really needed in the application.  So, a pressure regulator was installed to allow for adjustment and fine tuning of the vacuum solution.  The customer was able to adjust the operating conditions for the Line Vac and minimize compressed air use while maximizing the vacuuming effect on the fines stuck to the conveyor.

The Line Vac used in this application quickly and easily solved a chronic problem plaguing this manufacturer.  By installing this vacuum solution they were able to prevent build-up of dust and debris underneath the conveyor which originally required shutting down the line to clean.  This improved process uptime, reduced cleaning costs, and increased throughput in the application.

If you have an application in need of a vacuum solution, consider an EXAIR Line Vac.  And, if you have any questions, contact an EXAIR Application Engineer.  We’ll be happy to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Will It Spray?

Video showing the intended use of EXAIR Atomizing Nozzles, illustrated with a green spray pattern.

 

One of the common questions we receive with regards to our Atomizing Spray Nozzles, is whether they will spray a specific liquid.  Most of the time this is a simple answer, found by referencing the viscosity of the liquid and the viscosity range of the specific atomizing nozzle in question.  But, sometimes the viscosity of a fluid isn’t readily available and the best path forward is testing of the specific fluid or application.

Such was the case with the videos above and below.  This application was to spray a specific mixture comprised of catnip biomass onto materials as they pass along a conveyor.  There was no specific flow rate required, we simply needed to spray a specific width at a specific distance away from the product.

The video above shows the desired spray pattern from the nozzles, something with a wide angle and flatpattern, and the video below shows the most suitable solution we found in testing at EXAIR.

The suitable nozzle in this application was our model AD2010SS, an internal mix nozzle with deflected flat fan spraying pattern and a patented technology to prevent liquid flow after compressed air to the nozzle is turned off.  This nozzle provided the right solution for this application, and shipped from stock on the same day we received the order.

Fast forward a few weeks and this same application found benefit from an Electronic Flow Controller (EFC) model 9057.  The EFC allows for sensor-based control of compressed air flow, and thereby control of liquid flow to the AD2010SS nozzles.  This prevents operation of the nozzles when there is no need to spray the liquid.

The discussion, testing, and implementation of this solution are an excellent example of the engineering support available behind EXAIR products.  We really do help our customers find solutions, and if there is an unknown in an application we’re willing to find the answers together.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Troubleshooting Vortex Tube Performance

image-2

This Vortex Tube was not operating properly when initially connected to compressed air

One of the fun parts of Application Engineering at EXAIR is explaining the operation of Vortex Tubes to our customers.  Sometimes they’re described as a “reverse tornado” inside of a tube, spinning a pressurized airstream and converting it into a hot and cold flow.  Other times we describe it through the generation of two vortices with differing diameters, and the difference in diameters results in one vortex shedding energy in the form of heat.

But, no matter the way we explain their operation, we always stress the importance of proper compressed air plumbing.  If the compressed air piping/hoses/connections are not properly sized, performance problems can arise.  (This is true for any compressed air driven device.)

This fundamental came to light when working with one of our customers recently.  They were using a medium sized Vortex Tube to provide spot cooling in an enclosed space, but were not seeing the flow and temperature drop they knew to be possible with an EXAIR Vortex Tube.  And, after looking at installation photos of the application, the root cause was quickly spotted.

image-2-with-arrow

The red arrow in the bottom right corner of this image shows the beginnings of a reduction in compressed air supply.

I noticed what looked to be a very small hose connected to the inlet of the Vortex Tube in the image above.

image-1-with-circle

In this additional image, the small compressed air line is in full view. This was the root cause for performance problems in this application.

After further inspection of another photo, the small diameter tube was in full view.  This small hose serves as a restriction to compressed air flow, which in turn limits both flow and operating pressure of the downstream devices.  What that meant for this application, was poor performance from the Vortex Tube, all stemming from this reduction in piping size.

When looking to find the root cause of a performance issue with a compressed air driven unit, things aren’t always as easy as they were with this application.  A visual inspection is always a good idea, but if everything looks correct, here is a list of troubleshooting steps to consider:

  1. Check for quick-disconnects in the plumbing system.  Quick-disconnects are great from an operator’s perspective, but they can wreak havoc on compressed air flows due to small inside diameters and air volume restriction.
  2. Determine the operating pressure at the device.  This is imperative.  In order to make proper decisions to correct the performance concern, good information is required.  Knowing what is happening at the device is crucial for proper understanding.  There may be 100 PSIG at the main compressed air line, but only 60 PSIG at the device due to plumbing problems. A pressure gauge at the inlet of the compressed air product can provide this information.
  3. Check that the compressed air system has enough volume to properly supply the device.  A compressed air driven unit without the correct volume of compressed air is just as bad as having a lack of pressure.
  4. Check for leaks.  The US Department of Energy estimates that 20-30% of compressor output in industrial facilities is lost as leaks.  If your system and devices aren’t operating as they’re supposed to, check for leaks.  They may be contributing to the poor performance.  (Don’t know where your leaks are coming from?  Use our Ultrasonic Leak Detector!)

Fortunately for this customer, after improving the size of this tubing performance was on par with our published specifications and this customer was back in operation.  If you have a question about how to improve the utilization of the compressed air devices in your application, contact an EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Offshore Pipe Welding Cooled with Series of EXAIR Super Air Nozzles

atoll_air-cooling-interpass-1

EXAIR model 1122 Flat Super Air Nozzles used to provide cooling blow off.

One of the services we provide to our customers, is assistance in selection of the most suitable product solution for their application.  For most applications we have solutions readily available from stock, though that wasn’t the case in the solution shown above.

atoll_air-cooling-interpass-6

This unique blow off solution cools welds on 450mm (18″) pipes.

This configuration of model 1122 Flat Super Air Nozzles is used to cool pipe welds in an application located off the coast of France.  Pipes with an OD of 450mm (~18”) are welded together, and in order for the welds to be of the highest quality, they must be cooled.  To cool the welds, this customer needed to blow ambient temperature air over the pipes.

atoll_air-cooling-interpass-9

Closeup of nozzles used in this application

Initially, we explored a Super Air Wipe solution.  A Super Air Wipe can provide a full 360° blow off for this pipe, but there was an aspect of the application which led to a better solution through nozzles; an irregularity in position of the pipe.

atoll_air-cooling-interpass-8

Another view of the 1122 Flat Super Air Nozzles

The diameter of the pipes in this application is relatively constant, but there is some fluctuation in position as the pipe is moved.  If using a Super Air Wipe, this could mean contact with a precision machined surface, resulting in a change to the performance of the unit.  But, what if we could find a way to allow the blow off solution to have some “flex”.

swivels

Flat Super Air Nozzles with swivels provide the unique solution needed for this application.

“Flex” in this solution is provided through the use of EXAIR model 9053 swivel fittings, shown above with red circles, each used to mount an 1122 Flat Super Air Nozzle (16 of each).  These allow for proper placement of the nozzles, and also for movement if anything should ever contact the blow off solution.

An additional benefit of the EXAIR 1122 nozzles used in this application, is the ability to exchange shims inside the nozzle to increase or decrease the amount of force delivered from the nozzle.

Understanding the critical requirements of the customer led to this semi-custom solution using EXAIR Super Air Nozzles.  If you‘d like to explore an EXAIR blow off solution for your application, contact an EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Dust Suppression with an EXAIR Atomizing Nozzle

img_0378

An EXAIR Atomizing Nozzle used to minimize dust in the feed bowl of a cement mixer.

One of the most difficult aspects of handling and working with dusty materials is suppression of airborne contaminants.  Small particles can easily become a dust cloud, minimizing visibility and decreasing the quality of working conditions.  This then leads to lower productivity, low morale, and a missed opportunity to maximize the potential of personnel and equipment.

Our distributor in New Zealand recently assisted one of their customers facing this set of problems when working with cement and microsilica as it was poured into a mixer.  An exhaust fan was in place, but failed to extract the dust sufficiently, so a new approach was needed to minimize the dust.

 

circle-image

An AN2010SS No Drip Atomizing Nozzle provides the needed dust suppression in this application.

 

The solution was to use an EXAIR AN2010SS No Drip Internal Mix Atomizing Nozzle, shown above in the red box, to produce an atomized water mist.  The dust produced during pouring is captured by the small droplets of atomized water produced with this nozzle, reducing the dust and allowing proper use of the mixer.

 

ssh-image

The 9218 Stay Set Hose positions the atomizing nozzle where it needs to be.

 

In order to position the nozzle exactly where it needs to be, an 18” Stay Set Hose, shown above with the red arrow, was used to position the nozzle.  This hose is built specifically to have “memory” of the desired position, allowing for quick, easy, and repeatable position of the nozzle attached to the hose.

This simple setup is controlled through a timer to ensure water and compressed air use realize maximum efficiency.  It’s an easy solution to a painful problem for this customer.

If you’d like to explore how an EXAIR solution can solve problems in your facility or application, please contact an EXAIR Application Engineer.

 

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Will an EXAIR Vacuum Work with This Material?

img_9239

Activated carbon pellets in need of vacuuming

At the heart of EXAIR’s dry vacuum systems are a modified design to our Line Vac air operated conveyors.  These units convert a compressed air supply into a powerful vacuum source with no moving parts and thus no components to wear out.  This, in turn, translates to an instantaneous vacuum supply that is both durable and maintenance free.

These aspects of our vacuum systems led a pharmaceutical research company in Macau to contact us about using a Heavy Duty Dry Vac in one of their applications.  The complete details of the application were proprietary, but information about the specific use was made available.

What this customer needed to do, was to vacuum activated carbon chips in batches of ~300kg (660 pounds) into a contained drum or bag.  The ultimate question in the application was whether an EXAIR Heavy Duty Dry Vac system can vacuum 300kg of activated carbon.  And, if it can, how long will it take?  To answer these questions we turned to a bit of data about the activated carbon, and the potential vacuuming rate of the Heavy Duty Dry Vac System.

Activated carbon has a bulk density of ~0.52 g/cm³ (~32.5 pounds/ft³), and the Heavy Duty Dry Vac can vacuum this type of material at a rate of ~30kg/min. or more (~66 pounds/min. or more).  This means that we’ll be able to vacuum the full 300kg of activated carbon in ~10 minutes!

But, where will it all go?

If we were to use a 55 gallon Heavy Duty Dry Vac, we could vacuum ~105 kg. (232 pounds) of this material before filling the drum.  But, if we use a 110 gallon system, we will double this capacity while keeping the performance and compressed air demand of the system exactly the same.

The multiple sizes of EXAIR vacuum systems provided a wide array of solution options in this application.  After discussing these options and receiving a request for distributor contact in China, we passed this customer over to our Chinese distributor.

Providing solutions for industrial applications is the forte of EXAIR Application Engineers.  It doesn’t matter if the application is here in the States, or overseas, we’re available for any questions our customers have.

If you’d like to discuss your application with an EXAIR Application Engineer we’re available by phone, email, or online chat.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Finding The Right Solution Through Dedicated Engineering Support

crate

Plastic crate in need of blow off after washing

An OEM of crate washing equipment in Lebanon recently contacted me about an application on one of their conveyors.  The conveyor carries a plastic crate out of a washer and excess water on the crate was presenting a problem in the application.  In order for the crate to move on to the next step in the machine, a blow off solution was needed, but the exit rate from the washer was inconsistent.  In a given minute there could be 5 crates exit the washer, or there could be 20.  So, the ideal solution needed to have intermittent control options with instantaneous on/off functionality.

We immediately began discussing Super Air Knives, not only because we show plastic crate blow off in one of our many videos, but also because these units are instant on/off with full compatibility with a flow control device.  Utilizing a flow controller, such as the EXAIR Electronic Flow Controller or PLC device, will allow for precise control of the blow off solution, limiting compressed air use to a minimum.

2016-12-07_164322

The first blow off system design

2016-12-07_164342

This layout utilizes Air Knives on each side of the blow off as well as the top

After discussing application details we came to the design shown above, using one 24” Air Knife on the top of the crate and two 9” Air Knives on the sides.  However, this OEM had purchased numerous 2” Flat Stainless Steel Super Air Nozzles in the past (model 1122SS) and had a number available on site.  Modifying the system to utilize the nozzles already on-site, we came to this design:

system-layout

The finalized layout for this blow off system. Click for a larger view.

This layout utilizes (1) 24” Stainless Steel Super Air Knife on the top of the crate and (2) sets of (3) 2” Flat Stainless Steel Super Air Nozzles on the sides, held in place with EXAIR Stay Set HosesNotice the independent pressure regulators for the nozzles and the knife.  This is to allow the customer to balance the air flows, because the 2” flat nozzles will create a higher force than the Air Knife when operating at the same pressure.

In this application we were able to help a returning OEM solve their problem with the right mix of needed products.  Exploring the problem and discussing numerous viable solutions led to the best fit for the application and customer.  That’s precisely why EXAIR Application Engineers are available for any application call or question.  If you’d like to explore an EXAIR solution we’ll be happy to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

 

%d bloggers like this: