Cooling With Compressed Air: Air Knife vs. Vortex Tube Products

One of the popular applications for the EXAIR Super Air Knife is cooling. When mounted so that the air flow sweeps across the surface of a product, the laminar nature of the air flow works to maximize the contact time with the surface, which also maximizes the heat transfer…which means better product cooling than, say the turbulent air flow from a fan or blower.

Still, it’s common for us to get questions about how to provide even faster cooling.  Well, the two main variables in heat transfer are the time the air is in contact with the product, and the difference in temperature between the product surface and the air.

We’ve already touched on “time in contact”…sweeping the laminar flow across the surface at as low of an angle as you can, against the direction of travel, is ideal.  Combine that with the extraordinarily high air flow due to the entrainment level of the Super Air Knife, and you get an awful lot of air in contact with the surface, for a (relatively) long time.

Super Air Knives cool steel casting from 1,725°F (940°C) to 200°F (93°C) in under 20 minutes.

The difference in temperature, though, is a little trickier to deal with.  Because the developed flow from the Super Air Knife is mostly entrained ambient temperature air from the surrounding environment, you’re at the mercy of that ambient temperature.  One of the most common question – of the common questions about faster cooling – is, can you feed a Super Air Knife with cold air from a Vortex Tube?  The answer is no, for two big reasons:

  • The Vortex Tube’s cold flow can’t be back pressured, which would happen if you fed it through the plenum of a Super Air Knife and tried to make it come out the 0.002″ gap.
  • Even if it did work, the entrained air which, remember, makes up most of the flow, is still room temperature…meaning the total developed flow is a lot closer to room temperature than however cold the air you fed the Super Air Knife would be.

If the surface area to be blown on, to effect the desired cooling, is suitably sized, a Vortex Tube can be installed at a low angle to sweep its flow across.  The cold air flow from a Vortex Tube can also be distributed to more than one point, to cover more surface area.  That’s exactly what we do with our Dual Point Hose Kits for our Adjustable Spot Coolers, Mini Coolers, and Cold Gun Aircoolant Systems:

Dual Point Hose Kits can distribute air to both sides of a part, or onto a wider surface, than a single point discharge.

In fact, both the Single and Dual Point Hose Kits have a variety of tips they can be fitted with for tighter, or broader, flow patterns:

In some cases, multiple Vortex Tube products can be used, and, in other situations, the cold air can be directed through a manifold of some sort:

There are numerous methods to distribute the cold air flow from a lone, or a series of, Vortex Tubes.

Applications like the two on the right above (setting molten chocolate in molds, and keeping those white plastic parts during ultrasonic welding, respectively,) commonly start out as Air Knife inquiries, but the need for refrigerated air leads to creative Vortex Tube solutions.

If you’d like to discuss whether your application is best served by a Super Air Knife or a Vortex Tube Spot Cooling Product, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

About Vortex Tubes

Vortex tube
Cooling or Heating with the Vortex Tube

If I were to tell you that I can take a supply of ordinary compressed air and drop it’s temperature by 50°F without any type of refrigerant or electrical connection, you might be scratching your head a bit. That is of course unless you’ve been introduced to the wild world of Vortex Tubes. My favorite product among the EXAIR Product Line, the Vortex Tube does just that. With an ordinary supply of compressed air as the sole power source, and no moving parts, the Vortex Tube converts that airstream into a hot and cold flow that exit from opposite ends of the tube. No magic, witchcraft, or wizardry involved here. Just physics!

EXAIR’s Vortex Tubes are a low-cost, reliable, and maintenance-free solution to a variety of industrial spot cooling problems. With just an ordinary supply of compressed air, the Vortex Tube produces two streams of air: one hot and one cold. The Vortex Tube is capable of achieving a temperature drop/rise from your compressed air supply ranging from -50°F to +260°F (-46°C to +127°C). Flow rates range from 1-150 SCFM (28-4,248 SLPM) and cooling capacities of up to 10,200 Btu/hr. With all Vortex Tubes constructed of stainless steel, they’re resistant to corrosion and oxidation ensuring you years of reliable, maintenance-free operation.

VT_Flow

Two primary different styles of Vortex Tubes are offered: maximum refrigeration and maximum cold temperature. Tubes for maximum refrigeration have an “R” type generator installed. These tubes are optimal for most industrial applications. Model numbers containing 32XX all have an “R” generator installed. For “cryogenic” type applications such as cooling lab samples or circuit testing, the maximum cold temperature tubes are recommended. These tubes have a “C” type generator installed. Model numbers beginning with 34XX all are designed for maximum cold temperatures. The difference between the two is in the volume of air at the cold end. While the 34XX tubes deliver a colder temperature, there is much less volume of cold air.

All Vortex Tubes are adjustable. At the hot air exhaust side of the tube is an adjustable valve that controls the amount of air permitted to escape from the tube. The more air that exhausts from the hot end, the colder the temperature drop at the cold end. But, as more air escapes there’s less overall volume. Finding that balance between cold temperature and cold airflow volume is key to a successful application.

As we all know, if there’s a knob to turn, button to press, or adjustment that can be made an operator is inevitably going to tinker with it. Day shift will blame the night shift, night shift blames the day shift, and it can present a problem when the Vortex Tube has been specifically tested and set to achieve the desired cold fraction. If you know the cold fraction you need, but would prefer to prevent it from being able to be adjusted, EXAIR can install a precisely drilled hot plug to set the cold fraction percentage to your specifications and eliminate any potential for it to be changed.

Vortex family

If you’d still prefer to keep the adjustability, but don’t have the capabilities to measure and set it yourself, we can also set any Vortex Tube to the desired cold fraction with the adjustable valve and send it to you ready to be installed. We’ll provide you with a special model number so you can rest assured that any time you need another it’ll come set to your specification.

If you have an application in your facility that you believe is a nice fit for a Vortex Tube, give us a call. Our team of Application Engineers is standing by ready to help you determine the best solution for your application.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

A Cold Winter’s Chill and Vortex Tubes

Two weekends ago I had the pleasure of flying out to meet my friend in Colorado Springs and ski the weekend at Breckenridge. As an avid skier Breckenridge has been one of the resorts I have been wanting to ski since I started skiing out west. The weather was amazing and I couldn’t ask for better; the Saturday blue skies and cool breeze followed up by a Sunday of snow fall. The Trip was a dream come true. Breckenridge is specifically known for having high winds that howl across the peaks that stand at a max of 12,998 ft. above sea level. These chilling winds would freeze just about anyone if you aren’t dressed prepared for them as they blow right in your face on the lift. As I was sitting on the lift with these cold winds blowing in my face it brought to mind EXAIR’s Vortex Tubes, Cold Guns, and Cabinet Coolers.

EXAIR’s Vortex Tubes and similar products provide everything from a cool blast of air to a frigid breeze to cool off various parts and products. In a lot of smaller milling and grinding applications the Cold Gun has been used as a replacement to costly coolant-based alternatives. Vortex tubes have been used in cooling applications since 1945 and assist in everything from stress testing electronics to cooling down plastic parts during ultrasonic welding.

 Vortex tubes use a source of compressed air to create a hot and cold stream of air coming out on opposite ends of the device. This means that not only can the vortex tube be used for cooling but also heating applications. In one case a vortex tube was used to heat up an adhesive before it was sealed to get a better adhesion. Although the vortex tube can be used for heating purposes those applications are few and far between as usually a heating element or other heating source is more applicable.
Vortex tubes are quickly adjustable, just as the winds of Breckenridge can change from being a breeze to almost blowing you off of the mountain. Weather in the mountains is always varying and so are EXAIR’s Vortex Tubes.

If you have any questions or want more information on how we use our vortex tubes to improve processes all over industry. Give us a call, we have a team of application engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

Georges J Ranque: Father of the Vortex Tube

Georges J. Ranque is known as the inventor and father of the Ranque-Hilsch Vortex tube. The vortex tube is device that takes a compressed gas and generates hot and cold streams from a source of compressed gas. George accidentally discovered the phenomenon on accident while studying physics at Ecole Polytechnique in Paris France. Ranque was looking was performing an experiment on a vortex-based pump to vacuum up iron fittings; during the experiment he noticed that warm air was being expelled out of one side and cold air out of the other when he inserted a cone into one end of the vortex. In 1931 Ranque filed for a patent for the vortex tube and two years later presented a paper on it.

Georges vortex tube was all but lost and forgot about until 1945 when the German physicist Rudolph Hilsch published a paper on the device. This paper became widely read and exposed the vortex tube to the industrial manufacturing environment. This paper revived what was thought to be lost and led the vortex tube into what we see today.

How an EXAIR Vortex Tube operates

During World War 2 Georges Ranque started to develop different steels that would be used in military aviation efforts. He later went on to work at Aubert et Duval Steelworks as the Director of Metallurgical Laboratory. While at Duval he would continue to developing alloys for the aviation industry.

Interestingly, in 1972 he went on to publish a book on the search for the Philosophers Stone, a mythological chemical substance that Alchemist’s thought could be used to turn base metals into Gold. The following year in 1973 he passed away in his home just outside of Paris.

Here at EXAIR we have expanded the uses of Ranque’s original vortex tubes for various different cooling uses. The vortex tube can be found in our Cold Guns, Spot Coolers, and Cabinet Coolers. In many cases EXAIR’s spot coolers and cold guns have been used to replace coolant in simple milling and grinding applications. Also, EXAIR’s Cabinet Coolers have been keeping control cabinets from overheating for many decades. 

If you have any questions or want more information on how we use our vortex tubes to improve processes all over industry. Give us a call, we have a team of application engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook