Super Air Knife Prevents Errant Failure Readings On Vision Testing Of Parts

“False Positives” have been in the news a lot recently regarding COVID19 testing. We’re all hoping for better news on that soon, but all I have to offer about that, right now, are my hopes that you and yours are well and safe…and that we’re all in this together, and I’m pulling for you (us).

Manufacturers of precision products often use an automated vision system to inspect parts for defects. These systems can operate at a high rate of speed, and the sensors are capable of reading a very fine resolution, so even very slight blemishes on the surface of a critical part can be detected, allowing for instantaneous rejection of that part…a process that EXAIR Super Air Nozzles are commonly used for.

Model 1104 High Force Super Air Nozzle ejects a rejected package from a high speed conveyor line.

The ejection part of the process, however, is only as effective as the detection operation.  I recently had the pleasure of assisting a caller whose sensor was mounted at the outlet of a wash/rinse tank.  Some moisture carryover (and, at times, just the humidity) would cause moisture to collect or condense on the sensor lens, giving a “false positive” defect signal for a (presumably) perfectly fine part.

The sensor lens itself is 4.5″ in diameter and slightly convex.  They bought a Model 110206 6″ Aluminum Super Air Knife Kit:

  • The Air Knife itself is installed to blow a curtain of air across the lens at all times to keep it clean and free of moisture & condensation.
  • The Automatic Drain Filter Separator keeps the air supply clean & moisture free…remember, whatever’s in your air supply will get on whatever you’re blowing it onto.
  • The Pressure Regulator allows them to dial in the flow & force of the air curtain.  They really only need a good, stiff breeze running across this, so hitting it with full line pressure would just be a waste of perfectly good compressed air.
  • They can even use the 0.001″ thick shim from the Shim Set to dial down their consumption even more, if desired (and why wouldn’t that be desired?)
Super Air Knife Kits include a Shim Set, Filter Separator, and Pressure Regulator.

The EXAIR Super Air Knife is the most efficient, and quietest, compressed air blow off product on the market today.  They’re on the shelf in lengths from 3 inches to 9 feet.  Our 30 Day Unconditional Guarantee allows you to try one out, risk free, for up to a month.  What’s stopping you from saving money on compressed air, lowering your noise levels, and (very likely) improving the performance of your air blowing application?  Call me; let’s talk.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Cooling With Compressed Air: Air Knife vs. Vortex Tube Products

One of the popular applications for the EXAIR Super Air Knife is cooling. When mounted so that the air flow sweeps across the surface of a product, the laminar nature of the air flow works to maximize the contact time with the surface, which also maximizes the heat transfer…which means better product cooling than, say the turbulent air flow from a fan or blower.

Still, it’s common for us to get questions about how to provide even faster cooling.  Well, the two main variables in heat transfer are the time the air is in contact with the product, and the difference in temperature between the product surface and the air.

We’ve already touched on “time in contact”…sweeping the laminar flow across the surface at as low of an angle as you can, against the direction of travel, is ideal.  Combine that with the extraordinarily high air flow due to the entrainment level of the Super Air Knife, and you get an awful lot of air in contact with the surface, for a (relatively) long time.

Super Air Knives cool steel casting from 1,725°F (940°C) to 200°F (93°C) in under 20 minutes.

The difference in temperature, though, is a little trickier to deal with.  Because the developed flow from the Super Air Knife is mostly entrained ambient temperature air from the surrounding environment, you’re at the mercy of that ambient temperature.  One of the most common question – of the common questions about faster cooling – is, can you feed a Super Air Knife with cold air from a Vortex Tube?  The answer is no, for two big reasons:

  • The Vortex Tube’s cold flow can’t be back pressured, which would happen if you fed it through the plenum of a Super Air Knife and tried to make it come out the 0.002″ gap.
  • Even if it did work, the entrained air which, remember, makes up most of the flow, is still room temperature…meaning the total developed flow is a lot closer to room temperature than however cold the air you fed the Super Air Knife would be.

If the surface area to be blown on, to effect the desired cooling, is suitably sized, a Vortex Tube can be installed at a low angle to sweep its flow across.  The cold air flow from a Vortex Tube can also be distributed to more than one point, to cover more surface area.  That’s exactly what we do with our Dual Point Hose Kits for our Adjustable Spot Coolers, Mini Coolers, and Cold Gun Aircoolant Systems:

Dual Point Hose Kits can distribute air to both sides of a part, or onto a wider surface, than a single point discharge.

In fact, both the Single and Dual Point Hose Kits have a variety of tips they can be fitted with for tighter, or broader, flow patterns:

In some cases, multiple Vortex Tube products can be used, and, in other situations, the cold air can be directed through a manifold of some sort:

There are numerous methods to distribute the cold air flow from a lone, or a series of, Vortex Tubes.

Applications like the two on the right above (setting molten chocolate in molds, and keeping those white plastic parts during ultrasonic welding, respectively,) commonly start out as Air Knife inquiries, but the need for refrigerated air leads to creative Vortex Tube solutions.

If you’d like to discuss whether your application is best served by a Super Air Knife or a Vortex Tube Spot Cooling Product, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

The Importance Of Properly Sized Compressed Air Supply Lines

EXAIR Corporation manufactures a variety of engineered compressed air products that have been solving myriad applications in industry for almost 37 years now.  In order for them to function properly, though, they have to be supplied with enough compressed air flow, which means the compressed air supply lines have to be adequately sized.

A 20 foot length of 1/4″ pipe can handle a maximum flow capacity of 18 SCFM, so it’s good for a Model 1100 Super Air Nozzle (uses 14 SCFM @80psig) or a Model 110006 6″ Super Air Knife (uses 17.4 SCFM @80psig,) but it’s going to starve anything requiring much more air than those products.  Since compressed air consumption of devices like EXAIR Intelligent Compressed Air Products is directly proportional to inlet pressure, we can use the flow capacity of the pipe, the upstream air pressure, and the known consumption of the EXAIR product to calculate the inlet pressure of a starved product.  This will give us an idea of its performance as well.

Let’s use a 12″ Super Air Knife, with the 20 foot length of 1/4″ pipe as an example.  The ratio formula is:

(P2 ÷ P1) C1 = C2, where:

P2 – absolute pressure we’re solving for*

P1 – absolute pressure for our published compressed air consumption, or C1*

C1 – known value of compressed air consumption at supply pressure P1

C2 – compressed air consumption at supply pressure P2

*gauge pressure plus 14.7psi atmospheric pressure

This is the typical formula we use, since we’re normally solving for compressed air consumption at a certain supply pressure, but, rearranged to solve for inlet pressure assuming the consumption will be the capacity of the supply line in question:

(C2 P1) ÷ C1 = P2

[18 SCFM X (80psig + 14.7psia)] ÷ 34.8 SCFM = 49psia – 14.7psia = 34.3psig inlet pressure to the 12″ Super Air Knife.

From the Super Air Knife performance chart…

This table is found on page 22 of EXAIR Catalog #32.

…we can extrapolate that the performance of a 12″ Super Air Knife, supplied with a 20 foot length of 1/4″ pipe, will perform just under the parameters of one supplied at 40psig:

  • Air velocity less than 7,000 fpm, as compared to 11,800 fpm*
  • Force @6″ from target of 13.2oz total, instead of 30oz*
  • *Performance values for a 12″ length supplied with an adequately sized supply line, allowing for 80psig at the inlet to the Air Knife.

Qualitatively speaking, if you hold your hand in front of an adequately supplied Super Air Knife, it’ll feel an awful lot like sticking your hand out the window of a moving car at 50 miles an hour.  If it’s being supplied with the 20 foot length of 1/4″ pipe, though, it’s going to feel more like a desk fan on high speed.

The type of supply line is important too.  A 1/4″ pipe has an ID of about 3/8″ (0.363″, to be exact) but a 1/4″ hose has an ID of only…you guessed it…1/4″.  Let’s say you have 20 feet of 1/4″ hose instead, which will handle only 7 SCFM of compressed air flow capacity:

[7 SCFM X (80psig + 14.7psia)] ÷ 34.8 SCFM = 19psia – 14.7psia = 4.3psig inlet pressure to the 12″ Super Air Knife.

Our Super Air Knife performance chart doesn’t go that low, but, qualitatively, that’s going to generate a light breeze coming out of the Super Air Knife.  This is why, for good performance, it’s important to follow the recommendations in the Installation Guide:

This table comes directly from the Installation & Operation Instructions for the Super Air Knife.
All Installation Guides for EXAIR Intelligent Compressed Air Products contain recommended air supply line sizes for this very reason.  If you have any questions, though, about proper compressed air supply, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Usefulness of a Coanda Profile

How did a past inventor help generate efficient compressed air products for EXAIR?  In the early 20th century, Henri Coanda who was a Romanian aeronautical engineer that built an experimental Coanda-1910 airplane.  There are some debates if the airplane actually flew, but he invented a curved surface for a wing to generate a Coanda effect. The Coanda effect is the “tendency of a fluid jet to stay attached to a convex surface”1.   Thus, a moving stream of fluid will follow the curvature of the surface rather than continuing to travel in a straight line.  The Wright Brothers who flew the first airplane in the state where EXAIR is located, Ohio, used the Coanda effect to create lift.  With a curved profile, the air will adhere to the surface, causing a low pressure which makes the airplane fly.

Standard Air Knife

Super Air Amplifier with shims

EXAIR uses this Coanda profile to make some of our Intelligent Compressed Air Products™.   Like the airplane wing, our curved surface will also create a low pressure.  How does this help?  Well, high pressure will always travel to low pressure.  Instead of lift, we use the low air pressure to entrain ambient air.  This ratio is what we call the amplification ratio.  The higher the amplification ratio, the higher the efficiency for a blowing device. Two main compressed air products that EXAIR manufactures use this type of profile; Air Knives and Air Amplifiers.  I will cover both below.

Compressed air flows through the inlet (1) to the Standard Air Knife, into the internal plenum. It then discharges through a thin gap (2), adhering to the Coanda profile (3) which directs it down the face of the Air Knife. The precision engineered & finished surfaces optimize entrainment of air (4) from the surrounding environment.

The Air Knives that use the Coanda profile blows air along the length of the knife at a 90o angle from the exit.  We offer two types; the Standard Air Knife and the Full Flow Air Knife.  The Standard Air Knives are made in Aluminum or Stainless Steel with blowing widths up to 48” (1219mm).  The inlet ports are at each end; so, the overall length is 1” (25mm) longer.  The Full Flow Air Knives have the port or ports on the back.  The air blows out the entire length of the air knife.  The maximum length is 36” (914mm).

Both types of air knives use the Coanda profile to generate a low pressure as the air exits the gap and “hugs” the curve (reference photo above).  This low pressure draws ambient air into the air stream at a 30:1 amplification ratio for both the Standard Air Knife and Full Flow Air Knife.  So, for every one part of compressed air, we entrain 30 parts of ambient air.  Besides efficiency, it also adds mass to the air stream for a hard-hitting force.  With this engineered profile, the air stream is laminar which gives a consistent force across the entire length and reduces noise levels.  Not only will they save you money,  but they are also OSHA safe.

Air Amplifiers use the Coanda Effect to generate high flow with low consumption.

The Air Amplifiers use the Coanda profile in a circular form to pull in dramatic amounts of free surrounding air.  The Coanda effect is able to generate a low pressure to blow air for cooling, cleaning or removing smoke and debris efficiently and quietly.  The Air Knives above blow a flat stream of air while the Air Amplifiers will blow a conical air stream.  They can reach amplification ratios up to 25:1. The Super Air Amplifiers use a patented shim to increase efficiency.

Unlike fans, they blow a laminar air stream for quick cooling.  They do not have any moving parts or motors to wear, so they are very quiet.  EXAIR manufactures five different sizes from ¾” (19mm) to 8” (203mm).  The Adjustable Air Amplifiers have a plug that can be adjusted to control the blowing force from a breeze to a blast.  For cleaning surfaces, this is a nice feature to “dial” in to exactly what you need.  We also manufacture five different sizes in aluminum and stainless steel ranging from ¾” (19mm) to 4” (102mm).  Both Air Amplifiers can be attached to ducts to remove debris, heat or smoke from the area.

Utilizing the Coanda effect allows for massive compressed air savings. Whether it is a flat or round air stream, EXAIR can do this with high amplification ratios.  If you would like to discuss further how our Air Knives or Air Amplifiers can help you in your applications, please contact us. An Application Engineer will be happy to help you.  History has shown us a way to increase efficiency when using compressed air.  And you can take advantage of it with the Coanda profile.  Thank you Mr. Henri Coanda.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

1note – Wikipedia – Coanda effect