Optimizing Your Current Compressed Air System Is Simple

A few weeks ago, we posted a blog discussing how artificial demand and leaks can lead to poor performance and expensive waste.  Today, I’d like to review how following a few simple steps can help optimize your current compressed air system and reduce compressed air usage.

The first step you want to consider is measuring the air usage in the system. To do this, you want to start at the compressor and check individual leads to each drop point to a blowoff device, record your findings to track the demand. By measuring your compressed air usage, you can locate the source of high usage areas and monitor the usage on each leg of the system. If the demand exceeds the supply, there is potential for problems to arise, such as lowered pressure and force from compressed air operated devices leading to irregular performance.

Digital Flowmeter with wireless capability

EXAIR’s Digital Flowmeters are designed to measure flow continuously and accurately to give you real-time flow measurements of your compressed air system to help identify problems areas.

Step 2 is to locate the source of waste. Again, compressed air leaks can result in a waste of up to 30% of a facility’s compressor output. A compressed air leak detection and repair program can save a facility this wasted air. Implementing such a program can be used as a way for a facility to “find” additional air compressor capacity for new projects. Whenever a leak occurs, it will generate an ultrasonic noise.

Model # 9061 Ultrasonic Leak Detector

Our Ultrasonic Leak Detector is designed to locate the source of ultrasonic sound emissions up to 20’ away. These ultrasonic sound emissions are converted to a range that can be heard by humans. The sound is 32 times lower in frequency than the sound being received, making the inaudible leaks, audible through the included headphones and the LED display gives a visual representation of the leak.

The 3rd step involves finding the source of noisy and wasteful blowoffs, like open pipes or homemade blowoffs, and replacing them with an energy efficient, engineered solution. By replacing these devices, you are not only reducing the amount of waste but also improving operator safety by complying with OSHA safety requirements.

Model # 9104 Digital Sound Level Meter

EXAIR’s Digital Sound Level Meter is an easy to use instrument that measures and monitors the sound level pressure in a wide variety of industrial environments. The source of loud noises can be quickly identified so that corrective measures can be taken to keep sound levels at or below OSHA maximum allowable exposure limits.

The easiest way to reduce compressed air usage and save on operating expense is to turn off the compressed air to a device when it isn’t needed, step 4 in the process. Not only will this save money, in many cases, it can also simplify a process for the operator.


Sizes from 1/4″ NPT up to 1-1/4″ NPT are available

A simple manual ball valve and a responsible operator can provide savings at every opportunity to shut down the air flow.


120VAC, 240VAC or 24VDC


For automated solutions, a solenoid valve can be operated from a machine’s control. For example, if the machine is off, or a conveyor has stopped – close the solenoid valve and save the air.



Model # 9040 Foot Valve

A foot pedal valve offers a hands free solution to activate an air operated device only when needed, such as being implemented in an operator’s work station.


EFC – Electronic Flow Control

For even more control, you can use a device like our EFC or Electronic Flow Control. This helps minimize compressed air usage by incorporating a programmable timing controlled (0.10 seconds to 120 hours) photoelectric sensor to turn off the compressed air supply when there are no parts present. It is suited for NEMA 4 environments and can be easily wired for 100-240VAC.



Step 5, intermediate storage. Some applications require an intermittent demand for a high volume of compressed air. By installing a receiver tank near the point of high demand, there is an additional supply of compressed air available for a short duration. This will help eliminate fluctuations in pressure and volume.

Model # 9500-60

EXAIR offers a 60 gallon, ASME approved vertical steel tank with mounting feet for easy installation near high demand processes.

Many pneumatic product manufacturers have a certain set of specifications regarding performance at stated input pressures. In many applications, or in the case of using a homemade blowoff device like open pipe, these wouldn’t necessarily require the full rated performance of the device or full line pressure. Controlling the air pressure at the point-of-use device will help to minimize air consumption and waste, step 6.

Pressure Regulators permit easy selection of the operating pressure

By simply installing a pressure regulator on the supply side, you can start off at a low pressure setting and increase the pressure until the desired result is achieved. Not only will this help to conserve energy by only using the amount of air required for the application, it also allows you to fine tune the performance of the point-of-use device to match the application requirements.

If you have any questions, please contact an application engineer at 800-903-9247.

Justin Nicholl
Application Engineer



EXAIR’s EFC is THE Way to Save Compressed Air


Compressed air is the most expensive utility for most industrial facilities. The energy costs associated with the generation of compressed air can be very high. Because of this, EXAIR manufactures a wide range of products geared towards reducing your overall compressed air consumption.

The best way to save compressed air is to simply turn it off when it’s not being used. This might seem pretty simple, but there may be processes in your facility where this couldn’t be achieved by just turning a valve. In applications where product is traveling along a conveyor, and must be dried, cooled, or blown off, there is likely some spacing in between the parts. It isn’t necessary to keep the blowoff running constantly if there’s periods of intermittent spacing. To help reduce the overall load on the air compressor, implementing a solution to shut the air off in between each part can have a dramatic impact. EXAIR’s Electronic Flow Control, or EFC, is designed to improve efficiency by reducing overall compressed air usage. It utilizes a photoelectric sensor that detects when the part is present. When it’s not, it triggers a solenoid valve to close and shut off the compressed air supply.



Let’s take a look at an example that shows just how much air (and $$) an EFC can save. We had a manufacturer of car bumpers that was using a Model 112060 60” Super Ion Air Knife supplied at 40 PSIG to remove dust prior to a painting operation. The bumpers were moving at about 10’/minute and had 1’ of spacing in between each part. The bumpers are only under the blowoff for 10 seconds, while 6 seconds passed with no part present. With a (3) shift operation, this translates to 1,440 minutes of nonstop compressed air usage per day.

A 60” Super Ion Air Knife will consume 102 scfm at 40 PSIG. Their current method was using a total of 146,880 SCFM.

102 SCFM x 1,440 minutes = 146,880 SCF

With the EFC installed, the air was shut off for 6 seconds reducing the airflow by 37.5%. With the EFC installed, the compressed air consumption per day was reduced to 91,800 SCF.

146,880 SCF x .625 = 91,800 SCF

As a general rule of thumb, compressed air costs $0.25/1,000 SCF. By saving 55,080 SCF per day, this manufacturer was able to save $13.77 per day. Since this was a 24 hour/day shift running 7 day/week, total savings for the year came in at $5,012.28. This easily recoups the costs of the EFC and then begins to pay you in less than 6 months.

55,080 SCF x ($0.25/1,000 SCF) = $13.77

$13.77 x 7 days/week x 52 weeks/year = $5,012.28

The EFC models available from stock can accommodate flows up to 350 SCFM. For applications requiring more compressed air, EFCs with dual solenoids are also available. If you have an application in one or more of your processes where intermittent compressed air use could help save you money, give us a call. We’d be happy to take a look at the application and help determine just how quickly the EFC could start paying YOU!

Tyler Daniel
Application Engineer
E-mal : TylerDaniel@Exair.com
Twitter: @EXAIR_TD

Six Steps To Optimizing Your Compressed Air System – Step 1: Measure

“To measure is to know – if you cannot measure it, you cannot improve it.”
-Lord Kelvin, mathematical physicist, engineer,and pioneer in the field of thermodynamics.

This is true of most anything. If you want to lose weight, you’re going to need a good scale. If you want to improve your time in the 100 yard dash, you’re going to need a good stopwatch. And if you want to decrease compressed air consumption, you’ll need a good flowmeter. In fact, this is the first of six steps that we can use to help you optimize your compressed air system.

Six Steps To Optimizing Your Compressed Air System

There are various methods of measuring fluid flow, but the most popular for compressed air is thermal mass air flow.  This has the distinct advantage of accurate and instantaneous measurement of MASS flow rate…which is important, because measuring VOLUMETRIC flow rate would need to be corrected for pressure in order to determine the true compressed air consumption.  My colleague John Ball explains this in detail in a most excellent blog on Actual (volume) Vs. Standard (mass) Flows.

So, now we know how to measure the mass flow rate.  Now, what do we do with it?  Well, as in the weight loss and sprint time improvements mentioned earlier, you have to know what kind of shape you’re in right now to know how far you are from where you want to be.  Stepping on a scale, timing your run, or measuring your plant’s air flow right now is your “before” data, which represents Step One.  The next Five Steps are how you get to where you want to be (for compressed air optimization, that is – there may be a different amount of steps towards your fitness/athletic goals.)  So, compressed air-wise, EXAIR offers the following solutions for Step One:

Digital Flowmeter with wireless capability.  This is our latest offering, and it doesn’t get any simpler than this.  Imagine having a flowmeter installed in your compressed air system, and having its readings continually supplied to your computer.  You can record, analyze, manipulate, and share the data with ease.

Monitor your compressed air flow wirelessly over a ZigBee mesh network.

Digital Flowmeter with USB Data Logger.  We’ve been offering these, with great success, for almost seven years now.  The Data Logger plugs into the Digital Flowmeter and, depending on how you set it up, records the flow rate from once a second (for about nine hours of data) up to once every 12 hours (for over two years worth.)  Pull it from your Digital Flowmeter whenever you want to download the data to your computer, where you can view & save it in the software we supply, or export it directly into Microsoft Excel.

From the Digital Flowmeter, to your computer, to your screen, the USB Data Logger shows how much air you’re using…and when you’re using it!

Summing Remote Display.  This connects directly to the Digital Flowmeter and can be installed up to 50 feet away.  At the push of a button, you can change the reading from actual current air consumption to usage for the last 24 hours, or total cumulative usage.  It’s powered directly from the Digital Flowmeter, so you don’t even need an electrical outlet nearby.

Monitor compressed air consumption from a convenient location, as well as last 24 hours usage and cumulative usage.

Digital Flowmeter.  As a stand-alone product, it’ll show you actual current air consumption, and the display can also be manipulated to show daily or cumulative usage. It has milliamp & pulse outputs, as well as a Serial Communication option, if you can work with any of those to get your data where you want it.

With any of the above options, or stand-alone, EXAIR’s Digital Flowmeter is your best option for Step One to optimize your compressed air system.

Stay tuned for more information on the other five steps.  If you just can’t wait, though, you can always give me a call.  I can talk about compressed air efficiency all day long, and sometimes, I do!


FREE EXAIR Webinar – November 2nd, 2017 @ 2:00 PM EDT

On November 2, 2017 at 2 PM EDT, EXAIR Corporation will be hosting a FREE webinar titled “Optimizing Your Compressed Air System In 6 Simple Steps”.

During this short presentation, we will explain the average cost of compressed air and why it’s important to evaluate the current system. Compressed air can be expensive to produce and in many cases the compressor is the largest energy user in a plant, accounting for up to 1/3 of the total energy operating costs. In industrial settings, compressed air is often referred to as a “fourth utility” next to water, gas and electric.

Next we will show how artificial demand, through operating pressure and leaks, can account for roughly 30% of the air being lost in a system, negatively affecting a company’s bottom line. We will provide examples on how to estimate the amount of leakage in a system and ways to track the demand from point-of-use devices, to help identify areas where improvements can be made.

To close, we will demonstrate how following six simple steps can save you money by reducing compressed air use, increasing safety and making your process more efficient.


Justin Nicholl
Application Engineer

The Cost of Compressed Air Leaks Create the Need to Find and Fix

Leaks can cost you

As margins get tighter and cost of manufacturing climbs, industries are looking into other areas to be more economical.  A big focus today is in the compressed air systems.  Compressed air is considered to be the “forth” utility behind gas, water, and electricity.  It is a necessary system to run pneumatic systems, but it is the least efficient of the utilities.  For every $1.00 that is put into making compressed air, you only get roughly 5¢ of work from it.  So, it is very important to use this utility as efficiently as possible.

One of the largest problems affecting compressed air systems is leaks.  That quiet little hissing sound coming from the pipe lines is costing the company much money.  A university study was conducted to find the percentage of air leaks in a typical manufacturing plant.  In a poorly maintained system, they found on average that 30% of the compressor capacity is lost through air leaks.  In relation to the amount of electricity required to make compressed air, for every ten power plants producing electricity, there is one power plant producing electricity just for air leaks.  A majority of companies do not have a leak prevention program; so, many of these companies have poorly maintained systems. This creates a large amount of waste caused by simple air leaks.  To put a dollar value on it, a leak that you cannot physically hear can cost you as much as $130/year.  That is just for one inaudible leak in hundreds of feet of compressed air lines.  For the leaks that you can hear, you can tell by the chart below the amount of money that can be wasted by the size of the hole.  Unlike a hydraulic system, compressed air will not leave a tell-tale sign of a leak. You have to locate them by some other means.

**Note 1

Most leaks occur where you have threaded fittings, connections, hoses, and pneumatic components like valves, regulators, and drains.  The Optimization products from EXAIR are designed to help optimize your complete compressed air system.  The most effective way is to find and eliminate air leaks, and EXAIR has two products that can help do this.  The Ultrasonic Leak Detectors can find the air leaks, and the Digital Flowmeters can monitor your system for air leaks.  With both of these products included in a leak prevention program, you will be able to keep your compressed air system running optimally and reduce the wasted cost in air leaks and overusing the air compressor.

EXAIR Ultrasonic Leak Detector:

When a leak occurs, it emits an ultrasonic noise caused by turbulence.  These ultrasonic noises can be at a frequency above that which is audible for human hearing.  The EXAIR Ultrasonic Leak Detector can pick up these frequencies and make the leaks audible.  With three sensitivity ranges and LED display, you can find very minute leaks in your compressed air system.  It comes with two attachments; the parabola to locate leaks up to 20 feet away, and the tube attachment to define the exact location in the pipe line.  Once you find a leak, it can be marked for fixing.

EXAIR’s Digital Flowmeter w/ USB Data Logger

EXAIR Digital Flowmeter:

With the Digital Flowmeters, you can continuously monitor for waste.  Air leaks can occur at any time within any section of your pneumatic area.  You can do systematic checks by isolating sections with the Digital Flowmeter and watching for a flow reading.  Another way to monitor your system would be to compare the results over time.  With the Digital Flowmeters, we have a couple of options for recording the air flow data.  We have the USB Datalogger for setting certain time increments to record the air flows.  Once the information is recorded, you can connect the USB to your computer, and with the downloadable software, you can view the information and export it into an Excel spread sheet.  We also offer a wireless capability option with the Digital Flowmeters.  You can have multiple flow meters communicating through a gateway to monitor and record the flow information onto your computer system.  If you find that the flow starts trending upward for the same process, then you know that you have a leak.  It can also give you a preventive measure if your pneumatic system is starting to fail.

Compressed air leaks will rob you in performance, compressor life, and electrical cost.  It is important to have a leak prevention program to check for leaks periodically as they can happen at any time.  The EXAIR Ultrasonic Leak Detector and the Digital Flowmeters will help you accomplish this and optimize your compressed air system.  Once you find and fix all your leaks, you can then focus on improving the efficiency of your blow-off devices with EXAIR products and save yourself even more money.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb


**Note 1: Chart was published by Compressed Air Challenge in April 1998 – Rev. 0

How Do I Estimate The Cost Of My Compressed Air?

Saving Money and Compressed Air

One of the best features of EXAIR products is the engineering behind the designs.  For example, our nozzles are designed to generate a maximum force possible per CFM of compressed air.  This means that the compressed air consumed by the device is at its maximum possible efficiency, which in turn reduces the compressed air demand in an application, reducing the cost of the solution.

But, how do you determine the cost of a compressed air driven product?

Step 1 – Quantify flow

The first step to determine compressed air cost is to quantify the flow rate of the product.  Most pneumatic equipment will have a spec sheet which you can reference to determine air consumption, but open pipe blowoffs and drilled holes won’t provide this type of information.  In those cases, or in any case where the compressed air flow is unknown or questionable, a compressed air flow meter can be used.  (We have Digital Flowmeters for use on compressed air piping, with or without data logging capability, and with serial or wireless communication.)

Step 2 – Calculate flow over time

Once the flow rate is known, it’s time to determine flow rates per day/week/month/year.  To do so, we will perform a bit of short and easy math.  What we will do, is use the known flow rate of the device, and multiply this by the total time in operation to determine daily, weekly, monthly, and annual usage rates.  For example:

A 1/8” open pipe blowoff will consume 70 SCFM.  In an 8 hour shift there are 480 minutes, resulting in a total consumption of 33,600 SCFM per 8 hour shift.

Step 3 – Determine cost

With a quantified flow rate, we can now determine the cost.  Many facilities will know the cost of their compressed air per CFM, but for those which don’t, a cost of ($0.25/1000 standard cubic feet) can be used.  This value is then multiplied by the total compressed air consumption from above, to give a quantified dollar amount to the compressed air driven device.

Using the flow rate from above:

If (1) shift is run per day, 5 days per week and 52 weeks per year, this open pipe blowoff will have an annual cost of $2,184.00.

Step 4 – Compare

At this point we know the real cost of the device.  The benefit to quantifying these flow rates, is when making a comparison to an alternative such as an engineered solution.  For example, if we were to replace the open pipe blowoff reference above with an EXAIR 1010SS 1/8” NPT nozzle, the compressed air demand would drop to 13 SCFM, yielding the following flow rates and costs:

If (1) shift is run per day, 5 days per week and 52 weeks per year, this open pipe blowoff will have an annual cost of $405.60.

Comparing these two solutions on an annual basis yields a difference of $1,778.40.  This means an air savings which correlates to $1,778.40 per year – just by replacing ONE open pipe blowoff with an engineered solution.  Replacing multiple open pipe blowoffs will yield repeat savings.

The 1010SS EXAIR Micro Air Nozzle

Determining the cost of a compressed air driven device can clarify the impact of a truly engineered solution.  If you have an interest in determining the cost of the compressed air devices in your facility, contact an EXAIR Application Engineer.  We’ll be happy to help.


Lee Evans
Application Engineer

The Power of Optimization

When you take your car into the service shop for an oil change, you notice that they will check all the fluids, air filter, the belt, tire pressure, etc.  The reason that they do this is twofold.  They want to make sure that your car will not run into any potential safety problems and to get the maximum performance from your vehicle.

EXAIR has been in the forefront of selling efficient, safe, and effective products since 1983.  In that time, we wanted to become more than a manufacturer.  We wanted to also provide a way to improve your compressed air system.  We developed this into our Optimization product line.   By design, these products are also twofold.  First, it shows the importance of saving compressed air, improving safety and refining processes.  Second, it helps to improve the performance of your compressed air system to get the most out of it.   I am going to discuss a few points of each product below:

Electronic Flow Control

Electronic Flow Control:  The EFC is designed to save compressed air.  If there are any time gaps in a blowing or cooling application, then we should turn off the compressed air.  The EFC is a miniature timing PLC that uses a photoelectric sensor to turn off the compressed air.  By using less compressed air, you will be able to save a bunch of money.  This is why the light bulb in your refrigerator goes off when the door is closed (or does it?).

Digital Sound Level Meter

Digital Sound Level Meter:  This device is used for measuring sound level.  For safety reasons, OSHA sets a decibel ratings for work environments.  The Digital Sound Level Meter is calibrated to a NIST standard to accurately measure noise level.  If you have poor nozzles on your air guns or open pipes for blow-offs, you could be violating the OSHA standard 29CFR 1910.95(a), which will result in fines.  EXAIR products are designed to meet this standard.

Ultrasonic Leak Detector

Ultrasonic Leak Detector (ULD):   Many compressed air systems have leaks.  If they go unnoticed, this will affect the overall capacity of the compressed air system as well as costing a lot of money.  Leaks can account for one-third of your compressed air output.  The ULD can find these leaks to optimize your system and to improve the “health” of your compressor.

Digital Flowmeter

Digital Flowmeter (DFM):  If you can measure flow, then you can find many ways to optimize.  The DFM is able to show and record the amount of flow that you are using in your compressed air system.  You can also use the Digital Flowmeters to find leaks, diagnose pneumatic problems, and use the recorded information for preventative maintenance.  In comparing to an open pipes or competitive products, you can easily see the air savings with EXAIR products and easily determine the payback period (which is generally in weeks).  EXAIR does offer options that are wireless, serial, or USB type of recording, so, you can continuously monitor your compressed air system 24/7.

With the Optimization products, it can “service” your compressed air system; so that, you can get the most from it.  It can save you money, make your system safe, and keep things pneumatically maintained.  If you would like discuss one or more of these products, you can contact an EXAIR Application Engineer for more details.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb