Super Air Amplifiers: Evacuation of Smoke or Fumes

Air Amplifiers Are Great For many things!

In the pneumatic industry, there are two types of Air Amplifiers.  One type will amplify the inlet air pressure to a higher pressure.  The other type uses the inlet air pressure to amplify the air volume.  EXAIR manufactures the volume type called the Super Air Amplifiers™. 

This change in air volume is called the amplification ratio.  So, what does this mean?  The definition of ratio is the relation between two amounts showing the number of times one value is contained within the other.  For the EXAIR Super Air Amplifiers, the ratio is the value that shows the amount of ambient air that is drawn within the compressed air.  The higher the ratio, the more efficient the blowing device is.  The EXAIR Super Air Amplifiers can reach amplification ratios up to 25 to 1.  This means that 25 parts of ambient “free” air is introduced for every 1 part of compressed air. 

Why an EXAIR Super Air Amplifier?  Like a fan, they are designed to move air.  But fans use motors and blades to push the air toward the target.  The fan blades “slap” the air which creates turbulent air flows and loud noises. The Super Air Amplifiers do not use any blades or motors to move the air.  They just use a Coanda profile and a patented shim to create a low pressure to draw in the ambient air.  In physics, it is much easier to pull than it is to push.  The process of pulling air through the Super Air Amplifiers make them a more efficient, uniform, and quiet way to blow air.    

Super Air Amplifier – flow region

To show the power of the Super Air Amplifier, we have a video of a model 120022.  In the video, oil is being heated to generate smoke, and the Super Air Amplifier is placed in the center of an exhaust pipe.  This demonstration was for a customer that was looking to evacuate vapors from an enclosed area.  Other applications would include welding smoke, ventilation, exhaust tank fumes, and dust collection.  You can see when the Super Air Amplifier is turned on and in operation in the video below. 

EXAIR manufactures and stocks five different sizes ranging from ¾” (19mm) up to 8” (203mm) in diameter.  Some of the benefits that the Super Air Amplifiers have is the inlet and outlet can be ducted for remote positioning.  They are very compact and can fit into tight places like the exhaust pipe above.  They do not have any moving parts to wear or need electricity to run.  They only need clean compressed air to operate; so, they are maintenance-free.  Another unique feature of the EXAIR Super Air Amplifier is the patented shim which optimizes the low-pressure to draw in more ambient air.   As an added bonus, they are OSHA safe and meet the standards for noise level and dead-end pressure. 

With the today’s cost to make compressed air, it is important to use it as efficiently as possible.  The EXAIR Super Air Amplifiers have the ability to give effective blowing to remove debris, dry parts, transport material, cool objects, and clear smoke without using a large amount of compressed air.  EXAIR has the Super Air Amplifiers in stock and as always, EXAIR offers a 30-day unconditional guarantee for our customers in the U.S. and Canada to try them out.  If you have any questions about the Super Air Amplifiers or if you would like to discuss your application, an Application Engineer at EXAIR will be happy to help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Thinking Outside of the Box

Over the years of working at EXAIR, I have spoken to thousands of customers. The applications we discuss can run the full range that is showcased in the Solutions section of our website. It is always fun to approach applications when we have to think outside of the box for a solution. Throughout the Application Engineering department, our level of experience here combined with the customer’s knowledge of their setup, sometimes results in a solution that is not straightforward. Sometimes, we have to think outside of the box.

What kind of application may we have encountered where the obvious solution wasn’t the one that worked? One of the best applications that came to mind for me is when a customer was attempting to lift/pick up a very porous piece of filter media like the pre-filter from a Heavy Duty HEPA Vac. This material is extremely lightweight and porous. When hearing from a customer, I want to pick this material up, my mind quickly goes to the E-Vac Vacuum generators which are used to generate vacuum to operate suction cups.

In-Line E Vac picking up a block of cut extrusion.

With this material however, the vacuum flow needed is quite extensive and there is another product which is going to be a more efficient use of compressed air. That product, the Super Air Amplifier. As you can see in the photo below, a 2″ Super Air Amplifier easily lifts the porous material and because the suction side is a nominal hose size a hose can easily be attached if needed. The image shows a single amplifier lifting a larger sheet from a bench, these could be organized in an array like suction cups to pick materials up.

Model 120022 – 2″ Super Air Amplifier picking up a porous pre-filter material.

The moral of the story is to keep an open mind for solutions, while one path will always work other paths may become a more efficient manner. These solutions don’t always fit inside a box nice and neat. The Super Air Amplifier fit this because the amount of air entrained is tremendous and can easily be utilized to pull low vacuum force/high flow applications. This is very similar to fume evacuation which would be a “normal” application for the Super Air Amplifier.

If you want to discuss any point of use compressed air application with us, contact an Application Engineer and let us help you determine the solution your job needs.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Rotational molding: EXAIR Super Air Amplifiers compared to fans

Super Air Amplifier Family

A customer contacted EXAIR to find a better way to cool a die in a rotational molding facility.  Rotational molding, or Rotomolding, involves a heated hollow mold which is filled with plastic material. It is then slowly rotated (usually around two perpendicular axes), causing the softened material to disperse and cling to the walls of the mold. In order to maintain an even thickness throughout the part, the mold has to continue to rotate during the heating phase. After the desired timing sequence, the heating is turned off to allow the material to harden. 

This particular company was making plastic containers.  To try and improve the cycle rate between each container, they were using two fans (reference photo below) for cooling.  Time is money in this industry, and they wanted to target the fans to improve cooling.  They mentioned that water jackets for cooling would affect the life of the molds due to thermal shock.  So, they needed to cool with air; and EXAIR had a solution for them; the Super Air Amplifiers.

The Super Air Amplifiers as compared to fans are compact, easy to use, and very effective in cooling.  The capacity to cool is determined by the mass of air and the temperature difference. Since the mold is heated to 650oF (343oC) and the ambient air is 80oF (27oC), we have a good temperature difference for cooling.  For this application, I recommended to replace their fans with our model 120024 4” Super Air Amplifiers.  Each one can move 2,190 SCFM (6,1977 SLPM) of air while only needing 29.2 SCFM (826 SLPM) of compressed air at 80 PSIG (5.5 Bar). 

I also recommended to add one piece of a model 120022 2” Super Air Amplifier for cooling the inside of the mold.  Because the opening in the center of the mold is relatively small, a fan would take up most of the area.  Thus, not allowing the hot air to escape.  Since the 2” Super Air Amplifier is much smaller, they were able to place the air stream in the center allowing the hot air to escape around the edge of the hole.  With this combination, we were able to cool the mold 25% faster than the fans.  EXAIR did a comparison video between a Super Air Amplifier and a fan for cooling.  Watch it here.  

To expand on the comparison, EXAIR Super Air Amplifiers and electrical fans are designed to move air.  Fans use motors and blades to push the air toward the target.  There are mainly two types, centrifugal fans and axial fans.  The customer above was using axial fans.  The air enters from directly behind the fan, and the blades “slap” the air forward to the target. This creates a turbulent and loud air noise.  The EXAIR Super Air Amplifiers does not use any blades or motors to push the air.  They use a Coanda profile with a patented shim to create a low pressure to draw the air.   (You can read more about it here: Intelligent Compressed Air: Utilization of the Coanda Effect.)  So, they create laminar air flow which is much quieter. 

Super Air Amplifier – flow region

In physics, it is easier to pull than it is to push.  The same goes for moving air.  Fans are designed to “push” the air and the Super Air Amplifiers are designed to “pull” the air.  This method of pulling makes it simple to create a laminar flow in a small package which is more efficient, effective, and quiet.  With the patented shims inside the Super Air Amplifiers, they maximize the amplification by “pulling” in large amounts of ambient air while using less compressed air.  More air means better cooling.  If you want to move away from blower systems or axial fan systems to get better cooling, drying, cleaning, and conveying; you can contact an Application Engineer for more details about our Super Air Amplifiers. 

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Super Air Amplifiers Provide Safe Air During Mine Rescue Missions

superairamp(2)

I have recently had the pleasure of working with a customer developing a method of delivering air to trapped miners during a multi-man mine rescue mission. The federal government mandates that in the event of an explosion, miners must have a safe place to retreat for a minimum of 96 hours. This system will provide them with a supply of air during that period of time. In the initial stages, they had tried using some old venturis left over from a previous project. While this did work, they weren’t as effective or efficient as they needed. Through a little bit of research, they found EXAIR.

Generally, the Super Air Amplifier utilizes a source of compressed air. In this case, instead of using compressed air as the source, they’re using cryogenic liquid air. That air passes through a series of cold plates and heat exchangers and gets to the Super Air Amplifier at about 70°F. This air is then carried into the chamber, giving the miners a source of clean air.

superairamp(1)
Model 120021 in prototype

EXAIR Super Air Amplifiers utilize a patented shim design that allows the unit to entrain ambient air at a rate of up to 25:1 from the compressed air supply. This balanced outlet airflow minimizes wind shear, producing sound levels that are typically three times quieter than other air movers. The Super Air Amplifiers are supplied with a .003” slotted air gap and can be adjusted by replacing the shim with a thicker .006” or .009” shim or by regulating the air pressure supplied to it. In addition to making gross adjustments to the airflow by changing the shim thickness, flow can also be dialed in by regulating the air pressure supplied. All Super Air Amplifier Kits come complete with the a properly sized Auto-Drain Filter to keep the air clean and dry, a Pressure Regulator to “dial” in the airflow, and a shim set. When the filter is installed just upstream of the Super Air Amplifier, there is no need to perform any regular maintenance. With no moving parts to wear out, you can expect many years of reliable operation.

Do you have a cooling or drying application that could benefit from a Super Air Amplifier? Contact an Application Engineer today to find out how EXAIR can help you save compressed air in your application!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD