EXAIR Super Air Amplifiers Compared to Fans

Super Air Amplifier

EXAIR Super Air Amplifiers and fans are designed to move air.  Fans use motors and blades to push the air toward the target.  There are two types, centrifugal fans and axial fans.  Centrifugal fans are also called blowers or “squirrel” cages.  The air enters into the side of the fan and is redirected 90 degrees to the outlet.  The axial fans are box fans, ceiling fans, and industrial fans.  The motor and spindle are attached to blades.  The air enters from directly behind the fan, and the blades “slap” the air forward to the target. The EXAIR Super Air Amplifiers does not have any blades or motors to push the air.  They use a Coanda profile with a patented shim to create a low pressure to draw in the air.   (You can read more about it here: Intelligent Compressed Air: Utilization of the Coanda Effect.)  I will expand a bit more in this blog about how each one performs in moving ambient air.

The reason to move air can vary by application from cooling, drying, cleaning, and conveying.  The more air that can be moved, the better the performance for each of these functions.  With the Super Air Amplifiers and fans, these products can move the air, but what affects air flow?  Velocity, turbulence, and static or back pressure.  As we look at each one, we can start to see the effectiveness within each application.

Super Air Amplifier – flow region

Velocity is air flow per unit area.  This is the speed at which the air is traveling.  Some fan designs can affect the velocity, like the motor and spindle in the center of the axial fan.  Some of the area is removed from the middle of the flow region.  So, the velocity is very weak in the center.  (Reference diagram below).  With the centrifugal fan, the air velocity has to be redirected and pushed out the exhaust.  The velocity profile is very disoriented and will work against itself within the flow region.  If we look at the EXAIR Super Air Amplifier, the center is open as shown above.  There are no obstructions.  Since we are drawing in the ambient air, the velocity profile is laminar meaning that the flow is even across the entire flow region.  Laminar flow is optimum for a uniform force and effective blowing.

Axial Fan velocity profile

Turbulence is the “action” of the air flow.  If the turbulence is high, the air flow pattern is interrupted and chaotic.  It causes the velocity of the air to decrease quickly.  By the time the air reaches the target, it has low energy and force.  As a result of turbulence, noise levels can become very loud.  With a centrifugal fan or blower, the air is forced to move at a right angle and pushed out through an exhaust port.  This creates a very turbulent air flow.  The axial fan has less turbulence than its counterpart, but the blades still “slap” the air to push it forward.  This disruption in the flow pattern for both fans create turbulence and disarray.  The EXAIR Super Air Amplifier draws the air into the device to generate very little turbulence on the exhaust end.  The flow pattern is consistent, working together in the same direction.  This will allow for more air to reach the target.

Static pressure is important as it relates to the amount of resistance or blockage.  When blowing air through or around products, this resistance will determine the effectiveness and distance for efficient blowing.  To find the maximum resistance, this would be considered at the dead-end pressure.  When the exhaust is totally blocked, the maximum pressure is created.  In an application, the higher the resistance, the less air that can flow through and around to be utilized.  With fans, it is dependent on the blade types, motor size, and RPM.  Since the EXAIR Super Air Amplifiers do not have motors or blades, it is determined by the inlet air pressure.  So, the higher amount of static pressure, the more resistance that the blowing device can handle.

In comparison, I created a table below to show a model 120024 4” Super Air Amplifier against two different types of fans.  The first thing that you notice is the small package area of the model 120024 as compared to the fans that create similar air flows.  The centrifugal fan requires an addition electrical motor which increases the cost and generates a larger footprint.  The reason for the smaller flow area is the laminar air flow that the Super Air Amplifiers generate.  As stated above, the velocity pattern works together in the same direction.  So, a smaller profile can produce a lot more air movement.  In addition, this helps to create a larger static pressure.  Also referenced above, it will move the air much further to do more work.  With high turbulence, the air movement works against itself causing inefficiencies and louder noise levels.

Specification Table

In physics, it is much easier to pull than it is to push.  The same goes for moving air.  Fans are designed to “push” the air and the Super Air Amplifiers are designed to “pull” the air.  This method of pulling makes it simple to create a laminar flow in a small package which is more efficient, effective, and quiet.  Being powered by compressed air, there is no need for electric motors or blades to “push” the air ineffectively.  With the patented shims inside the Super Air Amplifiers, they maximize the amplification by “pulling” in large amounts of ambient air while using less compressed air.  If you want to move away from blower systems or axial fan systems to get better cooling, drying, cleaning, and conveying; you can contact an Application Engineer for more details.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Super Air Amplifier Increases Airflow In Vaccum Hood For Fume Extraction

A couple days ago I  took a call from an extrusion company who was looking to increase the airflow in their plating operation. They manufacture several different shapes and styles of aluminum extrusions by the way of 8 large extrusion presses. On one of the presses they make a specialty line of products that are sent to a finishing operation to be anodized.

Above the anodizing process tanks they use a vacuum hood to capture fumes and send them to a scrubber system so the air can be cleaned before being exhausted. They were starting to see an increase in the level of VOC (Volatile Organic Compound) gases in the area and, after some internal testing, determined the existing system wasn’t moving enough air through the system for the gases to be adequately delivered to the scrubber tank.

Example of a scrubber system

After further discussion, the customer ordered our Model # 120022 2″ Super Air Amplifier to test under our Unconditional 30 Day Guarantee.  Air Amplifiers are one of the most efficient products in the EXAIR catalog. Using a patented internal shim, they use a small amount of compressed air that passes through an internal chamber where it is exhausted through a thin gap at high velocity. This directed airflow creates a lower pressure at the intake side which draws in a large amount of free air. The 2 combining air flows result in a large volume of “amplified”, high velocity exhausting airflow, making them ideal for increased air movement.

Air Amplifiers entrain enormous amounts of “free” air, at ratios of up to 25:1!

If you have an application where you need to increase airflow or if you’re looking to vent or exhaust noxious fumes, an Air Amplifier is the ideal choice. For help selecting the best Model or to discuss a particular process, please contact an application engineer for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

Pueblo Chemical Agent-Destruction Pilot Plant Agent Processing Building courtesy of PEO ACWA via creative common license.

 

Intelligent Compressed Air: Utilization of the Coanda Effect

Henri Coanda was a Romanian aeronautical engineer most known for his work developing what is today known as the Coanda effect. The Coanda effect is the propensity of a fluid to adhere to the walls of a curved surface. A moving stream of fluid will follow the curvature of the surface rather than continuing to travel in a straight line.  This effect is used in the design of an airplane wing to produce lift. The top of the wing is curved whereas the bottom of the wing remains straight. As the air comes across the wing, it adheres to the curved surface, causing it to slow down and create a higher pressure on the underside of the wing. This  is referred to as lift and is what allows an airplane to fly.

2695876474_d8e82d5ee4_z

The Coanda effect is also the driving force behind many of EXAIR’s Intelligent Compressed Air Products. Throughout the catalog you’ll see us talking about air amplification ratios. EXAIR products are designed to take advantage of this phenomenon and entrain ambient air into the primary air stream. Compressed air is ejected through the small orifices creating air motion in their surroundings. Using just a small amount of compressed air as the power source, Super Air Knives, Air Nozzles, and Air Amplifiers all draw in “free” ambient air amplifying both the force and the volume of airflow.

Entrainment
EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

Super Air Knives provide the greatest amount of air amplification at a rate of 40:1, one part being the compressed air supply and 40 parts ambient air from the environment. The design of the Super Air Knife allows air to be entrained at the top and bottom of the knife, maximizing the overall volume of air. Super Air Nozzles and Super Air Amplifiers also use this effect to provide air amplification ratios of up to 25:1, depending on the model.

HowItWorks
Air Amplifiers use the Coanda Effect to generate high flow with low consumption.

The patented shim design of the Super Air Amplifier allows it to pull in dramatic amounts of free surrounding air while keeping sound levels as low as 69 dBA at 80 psig! The compressed air adheres to the Coanda profile of the plug and is directed at a high velocity through a ring-shaped nozzle. It adheres to the inside of the plug and is directed towards the outlet, inducing a high volume of surrounding air into the primary air stream. Take a look at this video below that demonstrates the air entrainment of a Super Air Amplifier with dry ice:

Utilizing the Coanda effect allows for massive compressed air savings. If you would like to discuss further how this effect is applied to our Super Air Knives, Air Amplifiers, and Air Nozzles give us a call. We’d be happy to help you replace an inefficient solution with an Engineered Intelligent Compressed Air Product.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Adjustable Air Amplifier Keeps Sensor Cool

Our distributor in China has a customer who visited the United States, while their customer was in the US they saw an EXAIR product installed and wanted to replicate the setup in China. He saw the EXAIR label and reached out to our distributor for help in identifying the part. Taking a quick measurement of the inlet side of the Adjustable Air Amplifier led us to discern it was a Model 6041 1-1/4” Adjustable Air Amplifier.

adjustable air amplifier sensor cooling
EXAIR Model 6041

The product was installed on a baghouse monitoring system. The sensor is used to detect minor leaks within the dust collection system before the leaks create a major problem. The environment in which the sensor was installed results in temperatures that are just above the normal operating temperatures during warmer months and can result in erroneous readings. When this occurs, production is shutdown to prevent a failure of the dust collection system while the filters can be inspected. By installing the Adjustable Air Amplifier to provide a large volume of air and a low level of compressed air consumption, the temperature is able to be maintained within typical operating range for the sensor. This alleviates the need for unnecessary shutdowns (or unnecessary filter replacement), while ensuring that the working environment remains dust-free.

EXAIR’s Adjustable Air Amplifiers are available in both Stainless Steel and Aluminum from sizes ranging from ¾”-4” on the air outlet. The outlet can be ducted as seen in this application, or it can be used as-is. The air gap of the Adjustable Air Amplifier is infinitely adjustable, allowing you to regulate both the air consumption and outlet flow from a “breeze” to a “blast”. In addition to the standard Adjustable Air Amplifiers, we also have a Model 121021 High Temperature Air Amplifier available that is capable of withstanding temperatures as high as 700°F.

Air Amplifiers can be used in a variety of different applications. Not only can they be used in applications requiring cooling, but the air entrainment properties of the amplifier can be used to exhaust smoke as discussed in this application at a foundry. An Adjustable Amplifier can also be used for drying or cleaning parts as well as for conveying light materials.

Regardless of the application, EXAIR has a suitably sized Air Amplifier to fit your needs. If you need an efficient and reliable way to vent, cool, clean, or dry parts give us a call. An Application Engineer would be happy to take a look at your application and provide the best recommendation.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

EXAIR’s Super Air Amplifier Removes Scrap Label Trim

air amp italian dressing.PNG(2)
Placement of the Super Air Amplifier tucked away in the machine

Recently I worked with our distributor in Peru that had a customer who was experiencing a nuisance issue one of their production lines. The company is a graphics company that serves many different food manufacturers in the Peruvian market. In this case, they were making a label for a salad dressing company. During the converting process, scrap trim is produced. This was falling to the ground, building up over time, and eventually would need to be cleaned up. To do so, they had to stop production and have an operator manually clean up the mess before restarting the machine.

IMG_20180123_120318
EXAIR’s Model 120021

Enter EXAIR’s Model 120021 Super Air Amplifier. The customer positioned the amplifier so that it would catch the scrap trim and convey it away from the machine. They positioned a waste receptacle about 6’ away and ducted the amplifier to carry the scrap to this bin. This eliminated their need to stop production and allowed them to run continuously. Before installing the Super Air Amplifier, they had to stop the machine approximately 4x or more per day for cleanup. At 10 minutes per, this was 40 minutes of lost production time per day! After proving the concept on this machine, the customer now plans to outfit another 3 with the same setup.

Because the material was so light and was only traveling a short distance, the Super Air Amplifier was a suitable solution. We’ve blogged in the past about similar applications where scrap trim is conveyed using a Line Vac. This is also a suitable solution, the Line Vac can be sized to accommodate your material and prevent excess scrap from accumulating and causing problems in your processes.

If you have a converting application that produces scrap trim, give us a call. We can help size an appropriate solution and make sure you’re not wasting valuable production time cleaning up the mess!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@Exair.com
Twitter: @EXAIR_TD

Two Types of Air Amplifiers – Volume and Pressure

When the topic of Air Amplifiers comes up, there are two avenues to consider –  is it the air pressure or the air volume that you wish to amplify?  There exists technologies to amplify either parameter, and we will examine them both.

There may be equipment or processes within a facility that operate best at air pressures higher than can be delivered, due to air compressor limitations or the supply system. An Air Pressure Amplifier can take the existing compressed air supply, and boost the pressure allowing for the higher needed air pressure without requiring a dedicated compressor capable of operating at the higher pressure.

An Air Pressure Amplifier is basically an air pump, driven by a portion of the compressed air supply.  The pump cycles and compresses the remaining amount of compressed air to a higher outlet pressure. This higher output pressure can be used to operate the equipment or process that required the pressure levels that the base system could not supply. The drawback is that the pump system consumes a good amount of the compressed air volume, to power the pump which reduces the amount of air available for other equipment or processes.  This drives up the compressed air consumption for the system, and requires the extra capacity to operate.

The other type of Air Amplifier is the kind that amplifies the air flow volume. EXAIR manufactures this type of amplifier.

AirAmplifiers

The air flow amplification works by taking compressed air (1) and directing into an annular chamber (2). It is then throttled through a small ring nozzle (3) at high velocity. This primary stream of air adheres to the Coanda profile (4) and is directed through the outlet. A low pressure area is created at the center, inducing a high volume flow (5) of surrounding air to be drawn in and added to the main air stream. The combined flow of primary and surrounding air exits as a high volume, high velocity flow.

salworksani

EXAIR manufactures (2) types of Air Amplifiers, the Super Air Amplifier and the Adjustable Air Amplifier.  In addition, a special model for High Temperature applications is available.  Sizes range from 3/4″ (19mm) to 8″ (203mm) to meet most air flow requirements.  Air amplification ratios start at 12:1 for the 3/4″ model and increase to 25:1 for the 4″ and 8″ models.

Charts and tables are available to help determine the right Air Amplifier for the job.

If you have questions about the Air Amplifiers, or would like to talk about any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

High Vacuum (Non-porous) and Low Vacuum (Porous) E-Vacs: Vacuum Generator Overview

In-Line E-Vac

With the amount of energy in compressed air, EXAIR can manipulate it by design for a variety of applications. One way that we can do this is by creating a vacuum pressure by the Venturi effect. By increasing the velocity of air through a constricted area, a low pressure, or vacuum, is created. Unlike a mechanical vacuum pump, the E-Vac does not have any moving parts or motors to wear. This maintenance free device uses only compressed air to generate a powerful vacuum pressure in a very compact and lightweight design. They can create vacuum levels up to 27” Hg (91 kPa) where complete vacuum is at 29.92” Hg (101.4 kPa). With our single stage systems, we can generate different vacuum levels and flows to create the optimal vacuum generation for your application.

Have you ever placed your hand over the hose of a vacuum? You can feel the maximum amount of vacuum pressure on your hand. The maximum vacuum pressure value is only at the condition of zero air flow. When you remove your hand from the hose, you change the vacuum pressure to a much lower value, but now you have the maximum amount of air flow. Like the E-Vacs, EXAIR has designed the product to either give you the maximum vacuum pressure or the maximum vacuum air flow. EXAIR separates these two vacuum generators as High Vacuum and Low Vacuum.

The high vacuum style is designed for non-porous products like glass, marble, and steel sheets. The low vacuum style is for porous products like cardboard, fabric, and plywood. Both types of vacuum generators are commonly used to pick and place parts, open bags, evacuate molds, and vacuum forming. They are easily adjusted by a regulator and a solenoid valve making the E-Vac very versatile. Even with no moving parts, these vacuum generators are quick to respond with very long cycle rates. The inline design makes them easy to install, so, you can begin using this vacuum product without much setup time. With the single stage design, it eliminates any vacuum fluctuation. I will go through both types of E-Vacs to explain the advantages in using these kinds of vacuum generators for different applications.

The High Vacuum Generator is used for non-porous products in pick and place applications as well as vacuum forming, clamping, and evacuation. This type of generator can create a vacuum pressure up to 27” Hg (91 kPa). In conjunction with the EXAIR vacuum cups, it allows for maximum holding capacity for heavy materials. We offer 7 different sizes ranging from 2 SCFM (65 SLPM) to 31 SCFM (872 SLPM) at 80 PSIG (5.5 Bar). They can be matched to the size and quantity of vacuum cups for increased efficiency as well as for improved cycle rates. If the surface of a rigid sheet is smooth or the application requires a high vacuum pressure, the High Vacuum E-Vac Generator would be the best product to use.

The Low Vacuum Generator is used for porous products as well as more delicate surfaces. This generator has a maximum vacuum pressure of 21” Hg (71 kPa). The design is such to allow for maximum air flow to make up any losses through the material or sealing area. With a regulator, you can control the maximum vacuum level to eliminate dimpling or disfiguring of the surface. Even with fabrics and rough surfaces, the Low Vacuum Generator can still pick up and hold the material. We offer 7 different sizes ranging from 1.5 SCFM (42.5 SLPM) to 17 SCFM (476 SLPM) at 80 PSIG (5.5 Bar). They can also be matched to the size and quantity of vacuum cups as well as to overcome any leakage. If the surface of the product being moved is rough or the surface is very delicate, the Low Vacuum E-Vac Generator would be the best product to use.

EXAIR created a video to show the difference between the E-Vacs as well as a demonstration.

Click Video

For experimentation with the E-Vacs and the vacuum cups, EXAIR offers kits for both types of generators. The standard kit includes four pairs of vacuum cups (matched to the size of the E-Vac), 10 feet (3 m) of poly line, and an assortment of fittings. For the Deluxe kit, it will include the same items in the standard kit, plus an automatic drain filter and a regulator. The E-Vacs are made of a durable 6061 aluminum, but if a different material is required for your application, EXAIR can review this request.

The EXAIR E-Vac offers an efficient, simple, and maintenance free solution to create vacuum. Whether lifting product horizontally or vertically, opening bags, aligning sheets or leak checking, the E-Vac ensures a flexible and reliable way to continuously keep your operation moving. As compared to an electric vacuum pump, these vacuum generators are much smaller, less expensive and much quieter. If you need help in sizing and selecting the correct model, you can contact an Application Engineer at EXAIR.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb