Carburetors and Venturi Tubes: Thank You Giovanni Battista Venturi

I know it has been a little while since I blogged about something with a motor so it should be no surprise that this one ties to something with a combustion chamber. This all starts with an Italian physicist, Giovanni Battista Venturi. His career was as a historian of science and a professor at the University of Modena. He gave Leonardo da Vinci’s creations a different perspective by crediting da Vinci to be a scientist with many of his creations rather than just an amazing artist. He then began to study fluid flow through tubes. This study became known as the Venturi Tube. The first patents in 1888 came to fruition long after Giovanni passed away. So what was this Venturi effect and how does it tie in to carburetors let alone compressed air?

The illustration below showcases the Venturi effect of a fluid within a pipe that has a constriction. The principle states that a fluid’s velocity must increase as it passes through a constricted pipe. As this occurs, the velocity increases while the static pressure decreases. The pressure drop that accompanies the increase in velocity is fundamental to the laws of physics. This is another principle we like to discuss known as Bernoulli’s principle.

1 – Venturi

Some of the first patents using Venturi’s began to appear in 1888. One of the key inventors for this was Karl Benz who founded Mercedes. This is how the Venturi principle ties into combustion engines for those that do not know the history. This patent is one of many that came out referencing the Venturi principle and carburetors. The carburetors can vary considerably in the complexity of their design. Many of the units all have a pipe that narrows in the center and expands back out, thus causing the pressure to fall and the velocity to increase. Yes, I just described a Venturi, this effect is what causes the fuel to be drawn into the carburetor. The higher velocity on the input (due to this narrowing restriction) results in higher volumes of fuel which results in higher engine rpms. The image below showcases Benz’s first patent using the Venturi.

2 – Venturi Patent

While carburetors slowly disappear and now can mainly be found in small engines such as weed eaters, lawn mowers, and leaf blowers, the Venturi principle continues to be found in industry and other items. Needless to say, I think Giovanni Battista Venturi would be proud of his findings and understanding how monumental they have been for technological advancements. For this, we will recognize the upcoming day of his passing 199 years ago on April 24, 1822.

Brian Farno
Application Engineer
BrianFarno@exair.com
@EXAIR_BF

1 – Thierry Dugnolle, CC0, Venturi.gif, retrieved via Wikimedia Commons https://upload.wikimedia.org/wikipedia/commons/1/16/Venturi.gif

2 – United States Patent and Trademark Office – Benz, Karl, Carburetor – Retrieved from https://pdfpiw.uspto.gov/.piw?Docid=00382585&homeurl=http%3A%2F%2Fpatft.uspto.gov%2Fnetacgi%2Fnph-Parser%3FSect1%3DPTO1%2526Sect2%3DHITOFF%2526d%3DPALL%2526p%3D1%2526u%3D%25252Fnetahtml%25252FPTO%25252Fsrchnum.htm%2526r%3D1%2526f%3DG%2526l%3D50%2526s1%3D0382,585.PN.%2526OS%3DPN%2F0382,585%2526RS%3DPN%2F0382,585&PageNum=&Rtype=&SectionNum=&idkey=NONE&Input=View+first+page

EXAIR’s Super Air Amplifier Amplification Ratio’s, Explained

Much like the popular song from decades ago that was about “money for nothing”,  EXAIR can provide you with “air for free”.  What we mean by this is that when you choose to use our Super Air Amplifiers, you will produce a large volume of air while only requiring a small amount of compressed air. This is because Air Amplifiers amplify total output flow up to 25 times by entraining (pulling in) ambient air.

So just how does the EXAIR’s Super Air Amplifier do this?   By utilizing our patented design (Patent # 5402938) that incorporates a special shim to maintain the air slots precisely.  The compressed air is released toward the center of the Super Air Amplifier  which creates a constant, high velocity outlet flow across the entire cross sectional area.  This

SAA How It Works

The amplification occurs by entraining most of the ambient air from the back of the Super Air Amplifier. Another small volume of air is added again as the air exits the Super Air Amplifier further increasing the amplification.

SAA Blog 1Super Air Amplifiers that have outlet diameter’s of 3/4″ (19mm), 1 1/4″ (32mm), 2” (51mm) and 4” (102mm) are supplied with a .003” (0.08mm) shim which is ideal for most applications, however there is the optional .006” (.15mm) and .009” (.23mm) if more air volume and force is needed. The 8” (203mm) Super Air Amplifier comes standard with a .009” (.23mm) shim and for increased performance we offer an optional .015” (.39mm).  The chart below explains how to determine the total output flow and air consumption at different operating pressures for each Super Air Amplifier model.

SAA Blog 2

When you need “air for free” or more accurately stated, to get all you can from every SCFM of compressed air you produce, put the EXAIR Super Air Amplifier to work in your facility!

If you would like to discuss the EXAIR Super Air Amplifier or any of EXAIR’s Intelligent Compressed Air® products, give us a call as we would enjoy hearing from you.

Erik Kuhnash
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook

Daniel Bernoulli, Entraining EXAIR Products

Daniel Bernoulli was born February 8, 1700 in Groningen in the Netherlands and was the son of Johann Bernoulli an early developer of calculus. It is believed that Daniel did not have a good relationship with his father. This mainly stemmed from the both of them entering the same scientific contest at the University of Paris. The two tied and his father Johann took exception to being compared to his son as “equal” and could not accept the shame and banned Daniel from his home. Daniel tried to reconcile their difference but his father carried this grudge to his death.

Earlier in Daniels life his father convinced Daniel to study business as there was no income incentive to study mathematics but against his will Daniel did choose the study of business. His father then convinced Daniel to study medicine but Daniel still wanted to study mathematics and agreed to study medicine under the condition that his dad teach him mathematics privately. Daniel completed his bachelors degree at the age of 15 and his masters degree when he was 17. Daniel then went on to study medicine and received his PhD in anatomy and botany from the Universities of Basel, Heidelberg and Strasbourg.

Daniel Bernoulli was very accomplished but mostly known for Bernoulli’s principle. Bernoulli’s principle is the relationship between fluid speed and pressure. An increase in the speed of a fluid will occur simultaneously with a decrease in the fluid’s pressure or potential energy. The Venturi effect, published in 1797 by Giovanni Venturi, applies Bernoulli’s principle to a fluid that flows through a tube with a constriction in it. The Venturi tube provides a handy method for mixing fluids or gases, and is popular in carburetors and atomizers, which use the low pressure region generated at the constriction to pull the liquid into the gas flow. It also offers a particularly clear example of the Bernoulli principle.

For example, above is how a Super Air Wipe works. Compressed air flows through an inlet (1) of the Air Wipe into an annular chamber (2). It is then throttled through a small ring nozzle (3) at high velocity. This primary airstream adheres to the Coanda profile (4), which directs it down the angled surface of the Air Wipe. A low pressure area is created at the center (5) inducing a high volume flow of surrounding air into the primary airstream. As the airflow leaves the Air Wipe, it creates a conical 360° ring of air that attaches itself to the surface of the material running through it (6), uniformly wiping the entire surface with the high velocity airflow.

EXAIR incorporates the Bernoulli Principle with our engineered products which entrain air such as our Super Air Knives, Super Air Wipes, Air Amplifiers and Static Eliminating products to name a few. We have several Applications Engineers that will appreciate your call to discuss our products. If you have an application or question please call 800.903.9247 or visit us on our website www,EXAIR,com and let us help you.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: @EXAIR_EK

Cooling Parts? Super Air Amplifiers May Be For You

Super Air Amplifier Family

When working with a cooling application, many customers will immediately look to the Vortex Tube and Spot Cooling product lines. While this may be the best solution for some applications, cold air is not always the best method that we have available for cooling. EXAIR’s Super Air Amplifiers are very effective at reducing the temperature of a part without requiring cold air, when the temperature differential between the Super Air Amplifier’s airflow and the temperature of the part is significant. Due to their ability to entrain large amounts of ambient air, we can move a lot of volume of air across the surface of the part and quickly lower the temperature.

I like to compare this to blowing on a hot cup of coffee just as it’s been brewed. The temperature of the air coming from your mouth is around 98.6°F, the same as your body temperature. Coffee can be as hot as 185°F when fresh. Due to the temperature differential between your breath and the hot coffee, we’re able to achieve a reasonable amount of cooling just by simply blowing across the surface. Typically, when the target temperature of the hot part or material needs to be around ambient temperature or higher, a Super Air Amplifier can be a good choice. 

While many applications utilize the outlet flow of the Super Air Amplifier to blow off, clean or cool a part or material, the ability of the Super Air Amplifier to entrain large amounts of ambient air can also be utilized to convey light materials or to draw in dust, smoke, or fumes from the surrounding environment. As the plugs on the exhaust side of the Super Air Amplifiers come in sizes of ¾”, 1-1/4”, 2”, 4”, and 8” the exhaust flow can be ducted with standard size hose.

EXAIR’s Super Air Amplifiers utilize a patented shim design to maintain critical positioning of component parts. This allows a precise amount of compressed air to be released at exact intervals toward the center of the Super Air Amplifier. This creates a constant, high velocity outlet flow across the entire cross-sectional area. Free, ambient air is entrained through the unit, resulting in high amplification ratios. The balanced outlet airflow minimizes wind shear to produce sound levels far lower than other similar air movers.

Patented Super Air Amplifier Shims

Super Air Amplifiers are supplied with a .003” thick shim that is ideal for most applications. Flow and force can be increased by replacing the shim with a thicker .006” or .009” shim. The flow of air is also controlled by adjusting the input pressure supplied to the amplifier. Higher pressures increase both the force and flow, while lower pressures decrease both force and flow. All Super Air Amplifiers are available in kits that come with a shim set as well as a suitably sized pressure regulator and auto-drain filter.

EXAIR has a solution for you if you need to move A LOT of air. Reach out to an Application Engineer today if you have an application that you believe could be served with a low-cost, simple solution!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD