High Vacuum (Non-porous) and Low Vacuum (Porous) E-Vacs: Vacuum Generator Overview

In-Line E-Vac

With the amount of energy in compressed air, EXAIR can manipulate it by design for a variety of applications. One way that we can do this is by creating a vacuum pressure by the Venturi effect. By increasing the velocity of air through a constricted area, a low pressure, or vacuum, is created. Unlike a mechanical vacuum pump, the E-Vac does not have any moving parts or motors to wear. This maintenance free device uses only compressed air to generate a powerful vacuum pressure in a very compact and lightweight design. They can create vacuum levels up to 27” Hg (91 kPa) where complete vacuum is at 29.92” Hg (101.4 kPa). With our single stage systems, we can generate different vacuum levels and flows to create the optimal vacuum generation for your application.

Have you ever placed your hand over the hose of a vacuum? You can feel the maximum amount of vacuum pressure on your hand. The maximum vacuum pressure value is only at the condition of zero air flow. When you remove your hand from the hose, you change the vacuum pressure to a much lower value, but now you have the maximum amount of air flow. Like the E-Vacs, EXAIR has designed the product to either give you the maximum vacuum pressure or the maximum vacuum air flow. EXAIR separates these two vacuum generators as High Vacuum and Low Vacuum.

The high vacuum style is designed for non-porous products like glass, marble, and steel sheets. The low vacuum style is for porous products like cardboard, fabric, and plywood. Both types of vacuum generators are commonly used to pick and place parts, open bags, evacuate molds, and vacuum forming. They are easily adjusted by a regulator and a solenoid valve making the E-Vac very versatile. Even with no moving parts, these vacuum generators are quick to respond with very long cycle rates. The inline design makes them easy to install, so, you can begin using this vacuum product without much setup time. With the single stage design, it eliminates any vacuum fluctuation. I will go through both types of E-Vacs to explain the advantages in using these kinds of vacuum generators for different applications.

The High Vacuum Generator is used for non-porous products in pick and place applications as well as vacuum forming, clamping, and evacuation. This type of generator can create a vacuum pressure up to 27” Hg (91 kPa). In conjunction with the EXAIR vacuum cups, it allows for maximum holding capacity for heavy materials. We offer 7 different sizes ranging from 2 SCFM (65 SLPM) to 31 SCFM (872 SLPM) at 80 PSIG (5.5 Bar). They can be matched to the size and quantity of vacuum cups for increased efficiency as well as for improved cycle rates. If the surface of a rigid sheet is smooth or the application requires a high vacuum pressure, the High Vacuum E-Vac Generator would be the best product to use.

The Low Vacuum Generator is used for porous products as well as more delicate surfaces. This generator has a maximum vacuum pressure of 21” Hg (71 kPa). The design is such to allow for maximum air flow to make up any losses through the material or sealing area. With a regulator, you can control the maximum vacuum level to eliminate dimpling or disfiguring of the surface. Even with fabrics and rough surfaces, the Low Vacuum Generator can still pick up and hold the material. We offer 7 different sizes ranging from 1.5 SCFM (42.5 SLPM) to 17 SCFM (476 SLPM) at 80 PSIG (5.5 Bar). They can also be matched to the size and quantity of vacuum cups as well as to overcome any leakage. If the surface of the product being moved is rough or the surface is very delicate, the Low Vacuum E-Vac Generator would be the best product to use.

EXAIR created a video to show the difference between the E-Vacs as well as a demonstration.

Click Video

For experimentation with the E-Vacs and the vacuum cups, EXAIR offers kits for both types of generators. The standard kit includes four pairs of vacuum cups (matched to the size of the E-Vac), 10 feet (3 m) of poly line, and an assortment of fittings. For the Deluxe kit, it will include the same items in the standard kit, plus an automatic drain filter and a regulator. The E-Vacs are made of a durable 6061 aluminum, but if a different material is required for your application, EXAIR can review this request.

The EXAIR E-Vac offers an efficient, simple, and maintenance free solution to create vacuum. Whether lifting product horizontally or vertically, opening bags, aligning sheets or leak checking, the E-Vac ensures a flexible and reliable way to continuously keep your operation moving. As compared to an electric vacuum pump, these vacuum generators are much smaller, less expensive and much quieter. If you need help in sizing and selecting the correct model, you can contact an Application Engineer at EXAIR.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Adjustable Air Amplifiers Solve Cooling and Air Circulation Problems

An EXAIR Adjustable Air Amplifier

An EXAIR Air Amplifier is a compressed air-driven device designed to utilize a small volume of compressed air and transform it into a large volume airflow.  This is done by throttling the compressed air through a small gap within the Air Amplifier, and allowing a controlled volume to escape.  This escaping compressed air flow adheres to a Coanda profile, changing its flow direction and resulting in an entrainment of ambient air.  The end result is an amplification of as much as 25x the output airflow compared to the inlet compressed air flow.  And, this already amplified volume of air continues entraining air as it exhausts from the Air Amplifier, resulting in further amplification.

But, what if you are uncertain of the air volume needed in your application?

When exploring any solution, there are bound to be uncertainties.  There may be application parameters which will change or remain unknown, a need to produce multiple airflow volumes within a given space, or simply a desire to have variability in the solution package.  If any of these apply, an Adjustable Air Amplifier is worth consideration.

EXAIR Adjustable Air Amplifiers utilize the same approach mentioned above to entrain ambient air, while allowing infinite adjustment of the incoming compressed air.  This translates to an infinite adjustment of the output airflow, allowing for fine tuning in an application to move the maximum volume of air with minimal compressed air use.

Arrows and text identify the components of an Adjustable Air Amplifier

To adjust compressed air consumption of an Adjustable Air Amplifier, simply loosen the locking ring, turn the “plug” within the “body” to increase or decrease the airflow, and retighten the locking ring.  There are no parts or components to change, just an easy, simple adjustment.

Aluminum and Stainless Steel Adjustable Air Amplifiers

Our adjustable units are available from stock in aluminum and 303 grade stainless steel, and in sizes from ½” to 4” in outlet diameter.  This range of size and materials (from stock) allows for proper sizing and adjustability within an application, while maintaining the integrity based on materials requirement.

For applications with high ambient temperatures and a desire to take advantage of the adaptability of Adjustable Air Amplifiers, a High Temperature Adjustable Air Amplifier is available upon request with our Application Engineers. These units withstand ambient temperatures of 700F (374C) and are useful to circulate hot air within ovens to provide consistent temperatures. They have been used within large rotational molds to prevent hot spots to maintain even material thickness. High Temperature Adjustable Air Amplifiers solve circulation and cooling problems with zero maintenance or breakdown concerns.

No matter the material of construction or application temperature, EXAIR Adjustable Air Amplifiers allow infinite adjustment of input and output flows while entraining a huge volume of ambient air.  This ability, to entrain high volumes of ambient air with small volumes of compressed air, is an expertise of EXAIR, which serves us well in helping customers with applying this principle to do work.  For example, if you were to need to cool a cast part and needed a large volume of airflow to complete the task, we can not only provide the products to do so, but also the engineering support to help determine the required air volumes.

Let us help you find an efficient solution to your application today.  We’re available by phone (1-800-903-9247), email (techelp@exair.com), online chat (www.exair.com), and our social media handles (@EXAIR_LE).

Lee Evans
Application Engineer

Custom Air Amplifiers To Meet Most Any Requirement

When I think of “special” in regard to Air Amplifiers, I’m more inclined to think of the applications they can be used in. I mean, the Air Amplifier itself is about as straight-forward as an engineered compressed air product can be:

Air Amplifiers use the Coanda Effect to generate high flow with low consumption.

Considering the simplicity of the product itself, they can be used for a large variety of “typical” applications:

  • Cooling
  • Drying
  • Cleaning
  • Ventilation
  • Fume Exhausting
  • Dust Collection

There are no shortage of “special” applications either.  They’re used successfully in Air Operated Conveyance applications (when the stronger vacuum head of a Line Vac isn’t required) and we’ve even got a customer who uses one instead of an E-Vac Vacuum Generator for a “pick & place” operation…they’re picking up small, porous fiber discs (sort of like a coffee filter) one at a time, and the E-Vac wanted to pick up a good part of the whole stack, no matter how low they turned the pressure.  And of course, I can’t think of anything more special about Air Amplifiers than this:

You have to read it to believe it.  Follow the link and click on “Case Study: Roaring Banana Breath”

With fifteen distinct models to choose from in a range of sizes (3/4″ to 8″,) materials (aluminum or Stainless Steel) and even a High Temperature model that’s rated to 700°F (374°C), we’ve still made a fair number of Custom Air Amplifiers too…thirty-four, to be exact, as of this writing.

I won’t bore you with all the details – I can’t, actually, because some of them are proprietary* – but here are some “regular” examples of “special” accommodations:

  • Connections: EXAIR Air Amplifiers have smooth bores on the inlet & outlet plenums that you can hose clamp a hose (or round duct) to if you need to get air flow from, or to, one place or another.  Sometimes, though, they’re going in to an existing system, so we’ve made them with flanges (150#RF and Sanitary Tri-Clamp, for example) or threads (NPT or BSPP.)  If you want to use something other than a standard hose or duct line, we can help.
  • Material of construction: Our durable, lightweight aluminum Super & Adjustable Air Amplifiers are just fine an awful lot of the time.  Our type 303 Stainless Steel Adjustable Air Amplifiers will hold up to heat and corrosives.  We’ve also in PTFE (Teflon™) as well as a range of metal alloys to meet specific corrosion or wear conditions.  If your environment calls for a little something extra, we can help.
  • Assembly: Super Air Amplifiers are fitted with a stock shim that gives you published performance.  We’ve got other thicknesses, though, if you need more (or less) flow, though.  Adjustable Air Amplifiers are, well, adjustable…you just thread the plug in/out of the body until you get the results you want.  Sometimes the user knows what shim they want in a Super Air Amplifier, or what gap their Adjustable Air Amplifier needs to be set to, and we can assemble it accordingly.  If you have a ‘tried-and-true’ performance setting and want it met right out of the box, we can help.
  • Assembly, part 2: Good engineering practices call for lubrication on O-rings and threaded connections, and we use high quality, general purpose compounds when assembling our Air Amplifiers.  These are detrimental, however, in certain situations (silicone exclusion areas, I’m looking at you.) If certain chemicals or compounds are prohibited by your application, we can help.

*Let’s say you’ve done the “heavy lifting” to call out one (or more) of these special design features.  If we make a custom product (and that’s not just Air Amplifiers, by the way) using directions based on your time and labor, we’ll treat that product as proprietary to you, and you alone.

EXAIR has 208 catalog pages worth of Intelligent Compressed Air Products on the shelf…8 of those pages are our Air Amplifiers.  If you want to talk about customizing one to meet your needs, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Super Air Amplifiers – Adjustability for Blowoff, Drying, Cooling, Circulation and Ventilation

The Super Air Amplifier is a powerful, efficient, and quiet air mover. Applications currently in place include blowoff, drying, cooling, circulation and ventilation. Sizes from 3/4″ to 8″ are available to best match the air volume that is necessary to achieve the process goals. There are a couple of ways to change the performance of the Super Air Amplifier if either a small or large change to the output flow is required.AirAmplifiers

The chart below shows the Total Output Flow for each of the 6 models. As an example, the Model 120021 or 121021, when operated at 60 PSIG of compressed air supply, will have a total output flow of 120 SCFM. These same devices when operated at 80 PSIG will have a total flow of 146 SCFM. By simply using a pressure regulation device on the compressed air supply, the output performance can be tuned to match the desired outcome.


For those applications where much greater flow and/or force is needed, the option of installing a thicker shim is available.  The Super Air Amplifiers are supplied with a 0.003″ shim installed (the 8″ model 120028, has a 0.009″ shim as standard) and can be fitted with shims of thicknesses of 0.006″ or 0.009″ (the 8″ model has an optional 0.015″ shim.) Installation of a thicker shim increases the slotted air gap, allowing for a greater amount of controlled air flow.  As a general rule, doubling the shim thickness will double the air flow rates.

Super Air Amplifier Shims

Patented* Shim Design for Super Air Amplifiers

The Super Air Amplifier design provides for a constant, high velocity outlet flow across the entire cross sectional area,.  The balanced outlet flow minimizes wind shear to produce sound levels that are typically three times quieter than other air movers. By regulating the compressed air supply pressure and use of the optional shims, adjustability and flexibility of the unit is wide ranging and sure to meet your process needs.

If you have questions regarding the Super Air Amplifier, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

*Patent #5402938

Super Air Amplifiers vs. Fans – Why are Amplifiers More Effective at Cooling & Drying?

Super Air Amplifier

Super Air Amplifiers entrain ambient air at a rate of 25:1!!

When seeking a suitable solution for cooling or drying your parts, you may be tempted to try out a low-cost fan to get the job done. While fans do a great job of keeping you cool during the warmer months, they’re not the best choice for cooling or drying parts. Have you ever noticed that when standing in front of a fan the flow pattern is not consistent? This is due to the nature in which the fan blades create that air flow by “slapping” the air as they spin rapidly. The air flow that exits from the fan is turbulent and is not as effective as the laminar air flow pattern that is produced by EXAIR’s Super Air Amplifier. The Super Air Amplifier utilizes a patented shim design that maintains a critical position of the air gap and creates a laminar air flow pattern that will exit the outlet of the unit.

fan data2

In addition to providing laminar air flow more conducive for cooling and drying, the Super Air Amplifier provides much more air that can be directed at the target. A standard 2.36” x 2.36” DC operated fan provides anywhere from 12-27 CFM at the outlet, depending on the model. For comparison, a Model 120022 2” Super Air Amplifier will provide 341 SCFM at the outlet when operated at 80 psig. At just 6” away from the outlet, this value increases to 1,023 SCFM!! When compared to the fan outlet air flow, the Super Air Amplifier produces more than an 1,100% increase in air volume!

When replacing a fan with a Super Air Amplifier, the process time can be dramatically reduced. The increase in air volume significantly reduces the contact time that your part will need to be exposed to the air flow, allowing you to increase your line speed and decrease the overall production cost of the part. This is achieved due to the nature in which a Super Air Amplifier draws in air from the ambient environment. At amplification ratios as great as 25:1, the Super Air Amplifier is the best way to move a lot of air volume across the part with very little compressed air supplied to it. Check out the video below for a good representation of the air entrainment of a Super Air Amplifier.

In addition to providing laminar airflow and increasing the volume of air, the Super Air Amplifier is also infinitely adjustable through one of two ways. Each size Super Air Amplifier has a shim set that can be purchased. Swapping out the stock shim for a thinner shim will reduce the compressed air consumption, force, and flow. Installing a thicker shim will increase it. Additionally, the force and flow can also be adjusted by regulating the input supply pressure through the use of a pressure regulator. With sizes ranges from ¾” up to 8”, there’s a Super Air Amplifier for all applications. Give us a call today to see how you can optimize your process by replacing your fans with one or more Super Air Amplifiers.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@Exair.com
Twitter: @EXAIR_TD

Air Amplifiers – What is an Amplification Ratio?

On Friday my colleague, Russ, blogged about the Super Air Amplifier (see that BLOG here, including a video demo)  In discussing the Air Amplifiers, the topic of amplification was mentioned. Today, I’d like to expand a bit further the amplification aspect of the Air Amplifier performance.

As the name of the device implies, the compressed air used by the Air Amplifier is added to, and thus ‘amplified’, the total output flow of the unit. Depending on the size and type of Air Amplifier, the amplification ratio starts at 12:1 and goes up to 25:1, with the ratio being the output flow to the compressed air usage.


Super Air Amplifier and Adjustable Air Amplifier

EXAIR offers (2) types- the Super Air Amplifier and the Adjustable Air Amplifier.  The Super Air Amplifier uses a patented shim technology to maintain a precise gap, which controls the compressed air flow and expansion through the unit.  As the expanded air flows along the Coanda profile, a low pressure area is created at the center which induces a high volume flow of surrounding air into the primary air-stream.  The combined flow of primary and surrounding air exhausts from the Air Amplifier in a high volume, high velocity flow.  The larger diameter units have a greater cross sectional area with larger low pressure areas, resulting in greater amplification ratios.

The Below table shows the amplification ratios.


The Adjustable Air Amplifier does not use a shim, but rather has an infinitely adjustable gap, allowing for fine adjustment of performance.  Force and flow is changed by turning the exhaust end to adjust the gap, and is then locked into place. The method of the amplification is the same as for the Super Air Amplifier, and the amplification ratios are similar and shown below.


The Super Air Amplifiers and Adjustable Air Amplifiers are ideal for use in applications and processes that require cooling, drying and/or cleaning of parts, or the ventilation of confined areas or weld smoke or the exhausting of tank fumes.

If you have questions regarding the Air Amplifier, or would like to talk about any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

What’s So “Super” About The Super Air Amplifier?

EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of free air from the surrounding environment.

“Free air” from the surrounding environment?  You might think it’s too good to be true, and if you think you’re getting something for nothing, you’re right.  If you consider, though, that it’s oftentimes preferable to work smarter, not harder, then the use of engineered compressed air products is too good NOT to be true.  Case in point: the Super Air Amplifier.

The Coanda Effect is the “work smarter, not harder” part of the Super Air Amplifier

Simple and low cost, (hey, “engineered” doesn’t necessarily mean “complex and expensive”) the EXAIR Super Air Amplifier uses a small amount of compressed air to generate a tremendous amount of air flow through entrainment.  How much do they pull in?  Depending on the model, they entrain air at rates of 12:1 (for the 3/4″ Model 120020) to 25:1 (4″ & 8″ Models 120024 & 120028, respectively.)  The larger diameters mean there’s more cross sectional area to entrain air, so there is indeed efficiency to scale, size-wise.  There are a couple of great visuals in this video, if you want to see the entrainment in action (1:50) or the difference that the entrainment makes (1:30):


Where can you use a Super Air Amplifier?  The easy answer is, anyplace you want a consistent, reliable air flow.  The pressure supply can be regulated from a “blast to a breeze,” depending on the needs of your application.  The patented shim can be replaced for even higher performance, while maintaining the efficiency that makes it so valuable.  The balanced flow makes for incredibly quiet operation…no more noisy fans, blowers, or open-end compressed air pipes.  The body (3/4″ to 4″ sizes) is cast with a 2-hole flange for ease of installation.

When can you use a Super Air Amplifier?  Another easy answer: anytime you want.  If you need a continuous air flow, there are no moving parts to wear or electrical components to burn out.  Supply them clean, dry air, and they’ll run darn near indefinitely, maintenance free.

Alternately, if you need intermittent air flow, starting & stopping operation is as simple as opening & closing a valve in the compressed air supply line.  They produce rated flow immediately, and cut it off just as fast.

Some of the more popular applications are ventilation/exhaust, cooling, drying, cleaning, and dust collection.  There are five distinct models to choose from, and they’re all in stock.  We’re also happy to discuss special requirements that might lead to a custom product too.  Our Application Engineers work with Design & Production all the time to meet specific needs of particular situations.

If you’d like to find out more about letting the Super Air Amplifier, or any of EXAIR’s Intelligent Compressed Air Products work smarter for you, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

%d bloggers like this: