Entrainment: How It Works, and Why EXAIR Products Use It.

EXAIR Super Air Nozzle entrainment

Because of the large amount of energy required to run an air compressor, the pneumatic system is considered the fourth utility in a manufacturing plant.  And saving this commodity and using it as efficiently as you can, should be a priority.  EXAIR has many products that can save this energy safely and effectively.  And the story behind the efficiency of EXAIR products is Bernoulli’s equation. 

Bernoulli’s principle explains how a high velocity fluid can generate a low pressure.  (You can read more about Bernoulli’s principle HERE.)  Let’s start by looking at Equation 1.

Equation 1:

P + p * V2/2 = C 

P – pressure

p – density of the fluid

V – velocity

C – a constant

As you can see from Equation 1, when the velocity goes up, the pressure must go down.  When we have a lower pressure, then the surrounding fluid will have to fill that void.  Since air is a fluid, this is how we can entrain the free ambient air while only using a small amount of compressed air.  Bernoulli’s Principle can be applied in two ways; as a Coanda and as a Venturi.  EXAIR uses both methods in our products for creating low-pressure effects. 

Compressed air flows through the inlet (1) to the Full Flow (left) or Standard (right) Air Knife, into the internal plenum. It then discharges through a thin gap (2), adhering to the Coanda profile (3) which directs it down the face of the Air Knife. The precision engineered & finished surfaces optimize entrainment of air (4) from the surrounding environment.

The first way is from a Coanda profile.  Coanda, named after Henri Coanda, noticed that a fluid would “hug” a curved surface.  (You can read more about Henri Coanda HERE.)  The high velocity air going around the curved surface will generate a low pressure above it.  We use this with our Full Flow and Standard Air Knives, our Air Wipes, and our Air Amplifiers.  With a Coanda profile, the low pressure will entrain the surrounding air to add mass to the air stream.  We can get an amplification ratio up to 30:1, which means that for every 1 part of compressed, 30 parts of ambient air are entrained.  We are able to create an efficient air moving (blow-off) device by using the Coanda profile. 

Generating even lower pressures can be accomplished with a Venturi.  This phenomenon is named after Giovanni Venturi, who discovered that by increasing the velocity through an orifice, the surrounding fluid will move with it, generating a lower pressure.  (You can read more about Giovanni Venturi HERE.)  Remember the higher the velocity, the lower the pressure.  We use the Venturi effect on our Super Air Knives, E-Vacs, Line Vacs, and Super Air Nozzles.  When compared to our Full Flow and Standard Air Knives, the Super Air Knives can generate an amplification ratio of 40:1.  We were able to engineer the product to increase the air entrainment efficiency even further. 

EXAIR has been manufacturing Intelligent Compressed Air® products since 1983.  We provide solutions that are efficient, effective, and safe for air moving and blow-off systems.  Consider the following analogy; homemade air movers and blow-off devices are the equivalent to incandescent light bulbs. EXAIR products are the equivalent to LED light bulbs.  More efficient design leads to lower operating cost, higher efficiency and a higher level of effectiveness. Entrainment of free ambient air can save you a lot of money and increase your mass flow with your compressed air use to generate higher forces on your targets.  If you would like to discuss solutions to use less compressed air, an Application Engineer is available to help.    

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

EXAIR Solenoid Valves and Ball Valves

EXAIR has been a pioneer in compressed air products for efficiency, safety, and quality.  We have designed our products using some interesting inventors from the past; like Henri Coanda and Giovanni Venturi.  These fluid dynamic engineers found a way to entrain ambient air.  We use these phenomena to increase the efficiency of our products by adding free ambient air to the airstream.  This will create a hard-hitting force without using a lot of compressed air.  Since compressed air is very expensive to produce, it will save you much money when using our blow-off devices.  To save even more money, EXAIR does offer valves to turn off the compressed air supply when not in use.  In this blog, I will go over the types of valves that we have.

The Manual Valves allow operators to turn on and off their system by hand. The full-flow ball valves range from ¼” NPT to 1 1/4” NPT in size and will not restrict flows.  EXAIR also offers a manual foot pedal valve for hands-free operations.  This ¼” NPT foot valve has a 3-way operation and works great if the operator has to use both hands in their process.

EXAIR also offers Solenoid Valves to turn on and off the supply of compressed air electrically for automated systems. We offer Solenoid Valves in three different voltages; 110Vac, 240Vac, and 24Vdc.  They have a large range of flows with ports ranging from ¼” NPT to 1” NPT.  All models are UL listed and are CE and RoHS compliant.

In more elaborate situations, EXAIR has attached these solenoid valves to a miniature PLC-like controller.  It is called the Electronic Flow Control, or EFC.  It uses a photoelectric eye to detect the part and trigger a timing sequence.  We have eight different timing operations to best combine the trigger mechanism with the blow-off device.  This is the next step in optimization, which will keep the compressed air usage to a minimum. 

EXAIR created a chart that shows “Six Steps to Optimizing Your Compressed Air System.”  Even though EXAIR has the most efficient products on the market for pneumatic systems, we still want to help our customers save even more money.  When not in use, the compressed air should be turned off, according to the fourth step.  In this blog, I discussed some products that can assist you with this.  If you wish to discuss further how to optimize your compressed air system, an Application Engineer at EXAIR will be happy to assist you. 

John Ball
Application Engineer


Email: johnball@exair.com
Twitter: @EXAIR_jb

A Simple Explanation of the Venturi Effect

The Venturi Effect was discovered by Italian physicist Giovanni Battista Venturi who lived between 1746 and 1822. In practice, there were a number of other physicists who were involved in the Venturi Effect but Giovanni Venturi is generally accepted as the first person to discover and explain the effect. So, what is the Venturi Effect, and how does it affect practical everyday living?

“A Venturi is a system for speeding the flow of the fluid by constricting it in a cone shape tube. In the restriction, the fluid increases its velocity, which reduces its pressure and produces a partial vacuum. As the fluid leaves the constriction, its pressure increases back to the ambient or pipe level.”

Any substance that flows is considered a fluid. This includes such things as water, shampoo, sunscreen, and even honey. Although not necessarily obvious, even gases, such as air, can be classified as fluids. So why would someone at EXAIR be talking about Venturi? Our E-Vacs use the Venturi Effect to create vacuum

This image has an empty alt attribute; its file name is in-line-e-vac-how-it-works.jpg

For most people the Venturi Effect is difficult to understand because you might expect the pressure to increase when a fluid is pushed through a restricted area. The fact that the increase in velocity is greater than any potential increase in pressure means that there is a net increase in velocity and a net reduction in pressure. The ability to mix-and-match certain fluids and gases via this process is relatively straightforward because the reduced pressure allows other substances to be sucked in through a connecting pipe at a rate of your choice.

EXAIR uses the Venturi Effect and other principles within the development of our engineered products. If you have questions or need a solution please call 800.903.9247 or visit us on www.EXAIR.com and let us help you.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: @EXAIR_EK

 

Photo: Venturi Tube with labels by ComputerGeezer an Geof.  GNU Free Documentation License

People of Interest: Giovanni Battista Venturi March 15, 1746 – April 24, 1822

Giovanni Battista Venturi was born in 1746 to an affluent family in Reggio, Italy. An aspiring student, Giovanni was ordained as a priest and a professor by the age of 23. An avid historian of science at the University of Modena, he was the first to emphasize Leonardo da Vinci as a scientist rather than just an artist as he’s more commonly known. Despite his love for history, it wasn’t long before the University of Modena became aware of his talents in mathematics where they appointed him as professor of geometry and philosophy in 1774. During his tenure at the University of Modena, Giovanni was promoted to the Professor of Experimental Physics, served as the Duke of Modena as the State engineer and auditor, later serving diplomatic roles in both France and Switzerland.

Giovanni is most well-known for his work in developing what is now known as the venturi effect. In 1797, he published a study on the flow of water through short cylindrical tubes. It wasn’t until 1888 that Venturi’s design was applied to something practical when a man named Clemens Herschel received a patent for the first commercial venturi tube. The original purpose of the venturi tube was to measure the amount of water used in individual water mills and is still used to this day as a means of measuring fluid flows.

Venturi tube.jpg
Venturi Tube

The venturi effect is a principle in fluid dynamics and states that a fluid’s velocity must increase as it passes through a constricted pipe. As this occurs, the velocity increases while the static pressure decreases. The pressure drop that accompanies the increase in velocity is fundamental to the laws of physics. This is known as Bernoulli’s principle. Below is an illustration of how the venturi effect works inside of a constricted tube.

venturi

In everyday life, the venturi principle can be found inside of many small engines such as lawn mowers, gas powered scooters, motorcycles and older style automobiles. Inside the carburetor, there is a small tube through which filtered air flows from the intake. Inside of this tube is a short narrowing. When the air is forced to constrict, its velocity increases and creates a vacuum. This vacuum draws in fuel and mixes with the air stream causing it to atomize.  As the throttle valve is opened further, more fuel is forced into the engine. This increases the RPM and creates more power.

inlineworks
In-Line E-Vac

This principle is also applied to EXAIR’s line of E-Vac products to create vacuum. The .gif below illustrates how an In-Line E-vac works. (1) Compressed air flows through the inlet (2) and is directed through a nozzle, constricting the flow of air. (3) As the air stream exhausts, it expands causing a decrease in pressure and an increase in velocity prior to passing through the venturi. (4) A vacuum inlet tangential to the primary airflow is located at the suction point between the orifice and the venturi. (5) The airflow that is drawn through the vacuum inlet mixes with the primary airstream, then exhausts on the opposite end.

The venturi effect is used in a variety of other EXAIR products used for cooling, drying and cleaning, in addition to the vacuum generators. If you have a process in your facility that may benefit from an Intelligent Compressed Air solution, give us a call. We’d be happy to discuss your application and implement a solution to both reduce your compressed air costs and improve worker safety.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Photo: Venturi Tube with labels by ComputerGeezer an Geof.  GNU Free Documentation License