Controlling Compressed Air can be Easy, and Save Thousands of Dollars

The history of automated controls can be traced back to inventors in ancient Greece & Egypt, who sought ways to keep more accurate track of time than afforded by sundials and hourglasses.  Their efforts, dating as far back as 300BC, produced devices actuated by water flow, which is actually quite reliable and repeatable: a set amount of water will flow via gravity through a fixed conduit in the exact same amount of time, every time.  These were in fairly common use until the invention of the mechanical clock in the 14th century.

The Industrial Revolution grew the need for automated processes exponentially…the need to control objects or tooling in motion, fluid flow, temperature, and pressure, just to name a few.  As time passed, the sky was literally the limit: modern aircraft & spacecraft rely on a staggering amount of automated processes from production to operation.

All throughout history, though, the benefits of automation remain the same: making processes more efficient.  That’s where the EXAIR EFC Electronic Flow Control comes in, for automating processes involving compressed air use, by turning air flow off when it’s not needed.  In fact, not only do they provide simple on/off control to blow only when a part is “seen” by the photoelectric sensor, there are eight distinct modes to incorporate delay on or off, flicker on or off, signal on/off delay, interval, or “One-Shot,” where the sensor detects the part, delays opening the valve per the timer setting, and blows for one second.

EFC Electronic Flow Control Systems are already assembled & wired for quick & easy installation.

The EXAIR EFC Electronic Flow Control is a true “plug and play” solution for automating a compressed air application.  Mount the sensor, plumb the valve, plug it in, and you’re ready to go.  There’s no complicated PLC wiring or programming, although the aforementioned mode selections do offer a great deal of flexibility other than “on when the sensor sees it; off when it doesn’t” operation, if desired.  Here are some prime examples of that flexibility, and the monetary benefits due to the compressed air consumption savings:

(Left) On/Off Delay setting used in tank refurbishment application to operate a “halo” of Super Air Knives for blow off as tanks exit oven where old paint is burnt off – $3,393 annual air savings. (Center) Interval setting actuates a Super Ion Air Knife for flat panel display dust blow off/static elimination – $2,045 annual air savings. (Right) Interval setting actuates a “halo” of Super Ion Air Knives to clean & remove static charge from plastic automotive bumper covers prior to painting – $5012 annual savings.

If you’d like to find out more about the EFC Electronic Flow Control can save you time, air, and money, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Siphon Fed No-Drip Atomizing Spray Nozzles

With 142 distinct models in stock, the Atomizing Spray Nozzles are easily EXAIR Corporation’s most diverse product line. If you need a reliable method of creating a fine mist of liquid flow with a flow rate as high as 303 gallons per hour (or as low as 0.1 gallons per hour,) with a spray pattern as large as 13 feet (or as small as 2-1/2 inches) in diameter, look no further – we have a spray nozzle for you, on the shelf and ready to go.

Siphon Fed models are the subject of today’s blog – they don’t require that the liquid be under pressure; you can feed them from the vessel the liquid comes in from a siphon height of up to 36 inches, or, for higher flows, from a gravity height of as low as 6 inches.

EXAIR Siphon Fed Nozzles work with non-pressurized liquids, either siphoned (left) or gravity fed (right.)

All Atomizing Spray Nozzles are available with EXAIR’s patented No-Drip option, which positively shuts off liquid flow when the compressed air supply is shut off.  One benefit of this is realized in coating applications, where an errant droplet of liquid would mar an otherwise smooth, even coating.  Operationally, though, it also means you can precisely turn the liquid flow on & off, in short, quick bursts, up to 180 times a second.

By far, the simplest way to do this is with a valve installed in the air supply line to the Atomizing Spray Nozzle.  A manual 1/4 turn ball valve works fine if you want the operator to control it.  Solenoid valves are often used to automate the process, and if you’ve got something to open & close the valve, you’re all set.  For example, if you want to spray coolant onto a cutting tool, just wire the solenoid valve into the on-off switch of the machine, like in the example shown to the right.

Alternately, our EFC Electronic Flow Control System provides a ready-to-go solution.  It comes pre-wired; all you have to do is plumb the valve into the air supply line and plug it in to a 120VAC grounded wall outlet.  When the photoelectric sensor “sees” the part you want to spray, it opens the valve.  When the part passes, it shuts the valve.  Easy as that.

I like this whole video, but if you just want to see the EFC Electronic Flow Control & Atomizing Spray Nozzle in action, skip to the 4:05 mark.

If you have a need to spray a fine, controllable liquid mist, EXAIR has a wide range of solutions.  Give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Six Steps to Optimizing Compressed Air: Step 4, Turn it Off When Not in Use

Step 4 of the Six Steps to Optimizing your compressed air is to turn off your compressed air when it is not in use. This step can be done using two simple methods either by using manual controls such as ball valves or automated controllers such as solenoid valves. Manual controls are designed for long use and when switching on and off are infrequent. Ball Valves are one of the most commonly used manual shut offs for compressed air and other fluids.

Automated controllers allow your air flow to be tied into a system or process and turn on or off when conditions have been met. Solenoid valves are the most commonly used automated control device as they operate by using an electric current to open and close the valve mechanism within. Solenoid valves are some of the more versatile flow control devices due to the fact that they open and close almost instantaneously. Solenoid valves can be used as manual controls as well by wiring them to a switch or using simple programming on a PLC to turn the valve on or off using a button.

EXAIR’s Solenoid Valves
EXAIR’s Electronic Flow Controller (EFC)

 

Some good examples of automated controllers are EXAIR’s Electronic Flow Controller (a.k.a. EFC) and EXAIR’s Thermostat controlled Cabinet Coolers.  

The EFC system uses a photo eye to detect when an object is coming down the line and will turn on the air for a set amount of time of the users choosing. This can be used to control the airflow for all of EXAIR’s products. EXAIR’s Thermostat controlled Cabinet Coolers are used to control the internal temperature of a control cabinet or other enclosures. This is done by detecting the internal temperature of your cabinet and when it has exceeded a temperature which could damage electrical components it will open the valve until a safe temperature has been reached, then turn off.    

By turning off your compressed air, whether it be with manual or automated controllers, a company can minimize wasted compressed air and extend the longevity of the air compressor that is used to supply the plants air. The longevity of the air compressor is increased due to reduced run time since it does not need to keep up with the constant use of compressed air. Other benefits include less use of compressed air and recouped cost of compressed air. 

EXAIR’s Ball Valves sizes 1/4″ NPT to 1-1/4″ NPT

If you have questions about our compressed air control valves or any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

6 Steps to Optimizing Your Compressed Air System

If you’re a follower of the EXAIR Blog, you’re probably well aware that compressed air is the most expensive utility in an industrial environment. The average cost to generate 1000 Standard Cubic Feet of compressed air is $0.25. If you’re familiar with how much air you use on a daily basis, you’ll understand just how quickly that adds up.

To make matters worse, many compressed air systems waste significant amounts of compressed air just through leaks. According to the Compressed Air Challenge, a typical plant that has not been well maintained will likely have a leak rate of approximately 20%!! Good luck explaining to your finance department that you’re carelessly wasting 20% of the most expensive utility.

SBMart_pipe_800x

6 Steps from Catalog

The best way to save energy associated with the costs of generating compressed air is pretty straightforward and simple: TURN IT OFF! Placing valves throughout your distribution system allows you to isolate areas of the facility that may not need a supply of compressed air continuously.

Even a well-maintained system is going to have a leakage rate around 10%, it’s darn near impossible to absolutely eliminate ALL leaks. By having a valve that allows you to shut off the compressed air supply to isolated areas, you’re able to cut down on the potential places for leaks to occur.

You’re likely not running each and every machine continuously all day long, if that’s the case why not shut off the air supply to those that aren’t running? When operators go to lunch or take a break, have them turn off the valves to prevent any wasted air. The fact of the matter is that taking this one simple step can truly represent significant savings when done diligently.

You wouldn’t leave your house with all the lights and TV on, so why leave your compressed air system running when it’s not in use? Even if everyone’s left for the day, leaks in the system will cause the compressor to keep running to maintain system pressure.

Taking things one step further, EXAIR’s Electronic Flow Control (EFC) utilizes a solenoid controlled by photoelectric sensor that has the ability to shut off the compressed air when no part is present. If you’re blowing off parts that are traveling along a conveyor with space in between them, there’s no need to continuously blow air in between those parts. The EFC is able to be programmed to truly maximize your compressed air savings. The EFC is available in a wide range of different capacities, with models from 40-350 SCFM available from stock and systems controlling two solenoid valves for larger flowrates available as well.

newEFC2_559

It’s no different than turning off your house lights when you leave for work each day. Don’t get caught thinking compressed air is inexpensive “because air is free”. The costs to generate compressed air are no joke. Let’s all do our part to reduce energy consumption by shutting off compressed air when it isn’t necessary!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

EXAIR’s EFC is THE Way to Save Compressed Air

waste

Compressed air is the most expensive utility for most industrial facilities. The energy costs associated with the generation of compressed air can be very high. Because of this, EXAIR manufactures a wide range of products geared towards reducing your overall compressed air consumption.

The best way to save compressed air is to simply turn it off when it’s not being used. This might seem pretty simple, but there may be processes in your facility where this couldn’t be achieved by just turning a valve. In applications where product is traveling along a conveyor, and must be dried, cooled, or blown off, there is likely some spacing in between the parts. It isn’t necessary to keep the blowoff running constantly if there’s periods of intermittent spacing. To help reduce the overall load on the air compressor, implementing a solution to shut the air off in between each part can have a dramatic impact. EXAIR’s Electronic Flow Control, or EFC, is designed to improve efficiency by reducing overall compressed air usage. It utilizes a photoelectric sensor that detects when the part is present. When it’s not, it triggers a solenoid valve to close and shut off the compressed air supply.

efcapp

 

Let’s take a look at an example that shows just how much air (and $$) an EFC can save. We had a manufacturer of car bumpers that was using a Model 112060 60” Super Ion Air Knife supplied at 40 PSIG to remove dust prior to a painting operation. The bumpers were moving at about 10’/minute and had 1’ of spacing in between each part. The bumpers are only under the blowoff for 10 seconds, while 6 seconds passed with no part present. With a (3) shift operation, this translates to 1,440 minutes of nonstop compressed air usage per day.

A 60” Super Ion Air Knife will consume 102 scfm at 40 PSIG. Their current method was using a total of 146,880 SCFM.

102 SCFM x 1,440 minutes = 146,880 SCF

With the EFC installed, the air was shut off for 6 seconds reducing the airflow by 37.5%. With the EFC installed, the compressed air consumption per day was reduced to 91,800 SCF.

146,880 SCF x .625 = 91,800 SCF

As a general rule of thumb, compressed air costs $0.25/1,000 SCF. By saving 55,080 SCF per day, this manufacturer was able to save $13.77 per day. Since this was a 24 hour/day shift running 7 day/week, total savings for the year came in at $5,012.28. This easily recoups the costs of the EFC and then begins to pay you in less than 6 months.

55,080 SCF x ($0.25/1,000 SCF) = $13.77

$13.77 x 7 days/week x 52 weeks/year = $5,012.28

The EFC models available from stock can accommodate flows up to 350 SCFM. For applications requiring more compressed air, EFCs with dual solenoids are also available. If you have an application in one or more of your processes where intermittent compressed air use could help save you money, give us a call. We’d be happy to take a look at the application and help determine just how quickly the EFC could start paying YOU!

Tyler Daniel
Application Engineer
E-mal : TylerDaniel@Exair.com
Twitter: @EXAIR_TD

Video Blog: The Monetary Benefits of an Engineered Solution

This video highlights the value and benefits of an engineered blow off solution.  We take a homemade open pipe blowoff and replace it with an EXAIR model 1100 Super Air Nozzle.  This air nozzle is then controlled through our Electronic Flow Controller, allowing for intermittent On/Off of the compressed air flow.  And, these solutions are wirelessly monitored via Zigbee network using our Wireless Digital Flowmeter.  Implementing these solutions results in a compressed air reduction of over 90%!!!

 

Full calculations along with supporting flow values (pulled from the same data shown in the video above) are shown below.

Screengrab of the flow values shown in the video above. Click for larger image.

The open pipe:

The first compressed air flow values to show up on the EXAIR Logger are for the open pipe blow off.  At 1 BAR operating pressure, this “solution” consumes 22.3 SCFM of compressed air.  At a cost of $0.25 for every 1,000 cubic feet of compressed air, this nozzle will cost $695.76 to operate 8 hours per day, 5 days per week, 52 weeks per year.

The engineered EXAIR Super Air Nozzle

Model 1100 EXAIR Super Air Nozzles consumes 4.7 SCFM at an operating pressure of 1 BAR – a reduction of 79% compared to the open pipe.  These savings prove out in terms of operating cost as well – $146.64 per year, compared to $695.76.

The engineered EXAIR Super Air Nozzle with Electronic Flow Control (EFC)

By controlling the “ON” time for this application with an EFC, we are only blowing for 32% of the time for each minute of operation which changes the required compressed air flow from 4.7 SCFM to a peak value of 1.5 SCFM. This control saves an additional 68% of compressed air flow.  And, these savings are compounded by eliminating the need for constant compressed air flow.  Total annual operating cost for the EXAIR 1100 Super Air Nozzle with Electronic Flow Control is just $46.80.

Implementing an engineered solution can have a TREMENDOUS impact on energy costs and operating costs in your facility.  Compressed air is the most expensive utility to produce and consume, making the impact of proper solutions of high value to any business.  Let us help you utilize engineered compressed air solutions in your facility by contacting an EXAIR Application Engineer today.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Reducing Lubricant in a Blanking Operation

We recently chatted with a customer that was looking to improve the lubrication system for multiple blanking lines.  Blanking involves the cutting of sheet metal in a single step, to separate the piece form the surrounding stock. The part that is cut out is the desired product and  is called the ‘blank.’  This operation can be moderate to fast in speed, and the process creates heat, so a lubricant is used to cool and decrease the wear on the tooling.  Our customer was looking for a better way to apply the lubricant.

We proposed the model AN2010SS, a No Drip, internal mix, narrow angle, round fan Atomizing Nozzle.  The nozzle uses compressed air to create a mist of the liquid with very fine droplet size. When using for the  lubricant, a fine layer can be applied over the entire surface without areas of over coverage and waste.  This leads to lower costs for lubricant, and less mess on the blanks.

No Drip Atomizing Nozzle
No Drip Atomizing Nozzle

To simplify the process, the No Drip model was chosen. The No Drip style has the added benefit of positively stopping liquid flow when the compressed air is turned off.  There is no need to independently control the liquid flow via a control system and valve.

Finally, to control the compressed air side, we recommend the Electronic Flow Control (EFC.)  Utilizing a photoelectric sensor, the open position of the press can be detected and using 1 of many program options, the compressed air can be turned on and off to accurately control the application of the lubricant.  Due to the excessive amount of lubricant being used, the customer was applying every other cycle.  The first blank would be overly lubricated so that there would be some remaining for the next.  With the Atomizing Nozzle and EFC, the right amount of lubricant can be applied for each cycle.  The result is reduced lubricant usage, and a better operation.

EFCp4

If you have questions regarding Atomizing Nozzles or any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB