EXAIR Digital Sound Level Meters Measure Noise Exposure Levels

Digital Sound Meter

EXAIR offers the model 9104 Digital Sound Level Meter.  It is an easy to use instrument for measuring and monitoring the sound level pressures in and around equipment and other manufacturing processes.

Sound meters convert the movement of a thin membrane due to the pressure waves of sound into an electric signal that is processed and turned into a readable output, typically in dBA.  The dBA scale is the weighted scale that most closely matches the human ear in terms of the sounds and frequencies that can be detected.

Noise induced hearing loss can be a significant problem for many workers in manufacturing and mining. To protect workers in the workplace from suffering hearing loss OSHA has set limits to the time of exposure based on the sound level.  The information in the OSHA Standard 29 CFR – 1910.95(a) is summarized below.

OSHA Noise Level

The EXAIR Digital Sound Level Meter is an accurate and responsive instrument that measures the decibel level of the sound and displays the result on the large optionally back-lit LCD display. There is an “F/S” option to provide measurement in either ‘slow’ or ‘fast’ modes for stable or quickly varying noises. The ‘Max Hold’ function will capture and hold the maximum sound level, and update if a louder sound occurs.

Certification of accuracy and calibration traceable to NIST (National Institute of Standards and Technology) is included.

If you have questions about the Digital Sound Level Meter, or would like to talk about any of the quiet EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS


Reduce Sound Level in your Factory, Improve Worker Safety and Comfort

Checking the sound level in your processes is an important aspect of ensuring a safe working environment for your employees. Loud noises and the exposure time can lead to significant health concerns. Permanent hearing loss, increased stress levels due to the uncomfortable work environment, and potential injury due to lack of concentration or inability to hear the surroundings are all examples of some risks associated with a noisy environment.

The Occupational Safety and Health Administration, known by most simply as OSHA, introduced Standard 29 CFR 1910.95(a) as a means of protecting operators from injury associated with high noise levels. The chart below indicates maximum allowable exposure time based on different noise levels. At just 90 dBA, an operator can operate safely for 8 hours. Open end pipe blowoffs and some air guns fitted with cross drilled relief holes will often result in noise levels in excess of 100 dBA. At 110 dBA, permanent hearing loss can be experienced in just 30 minutes!

OSHA Chart

The first step to lowering your sound level is to take a baseline reading of your various processes and devices that are causing the noise. EXAIR’s Sound Level Meter, Model 9104, is an easy to use instrument that provides a digital readout of the sound level. They come with an NIST traceable calibration certificate and will allow you to determine what processes and areas are causing the most trouble.


From there, EXAIR has a wide range of Intelligent Compressed Air Products® that are designed to reduce compressed air consumption as well as sound levels. For noisy blowoffs where you’re currently using an open-ended pipe or a loud cross-drilled nozzle, EXAIR’s Super Air Nozzles are the ideal solution. Not only will they pay for themselves over time due to compressed air savings, but your operators will thank you when they’re able to hear later on in life!!

Drilled pipe is another common culprit of high noise levels. Rather than purchasing an engineered solution, the idea is that a simple drilled pipe is just as effective right? Not at all!! Not only does a drilled pipe produce exceptionally high sound levels, but the amount of compressed air used is also very inefficient. EXAIR’s Super Air Knife is available in lengths ranging from 3”-108” and has a sound level of just 69 dBA at 80 PSIG. At this sound level, operators won’t even require hearing protection at all!

SAK vs drilled pipe
EXAIR’s Super Air Knife is the ideal solution for replacing noisy, inefficient drilled pipe

With all of these products available in stock, EXAIR has the tools you need to reduce sound level in your processes. If you’d like to talk to an Application Engineer about any applications that you feel could benefit from a sound reduction, give us a call.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

What is Sound and Interesting Facts About Sound

In physics, sound is a wave of pressure. It occurs in a medium, which can be a solid, liquid or gas. Sound cannot travel through a vacuum, such as in space. The wave of pressure reaches our ears and causes the ear drum to vibrate, which then goes through a complex process to ultimately be perceived as audible sound.

There are several characteristics of sound waves that can be measured and help define the sound. A sound wave can be visualized as a repeating sinusoidal wave (see below), and can be described by these properties – frequency and wavelength, amplitude, and speed.

Sound Wave
Sound Wave
  • Frequency is the number of cycles in 1 second, and is measured in Hertz (Hz)
  • Wavelength is the distance over which 1 cycle occurs, and for audible sound is  between 17 m and 17 mm long
  • Amplitude is the measure of its change over a single period, and normally a measure of sound loudness
  • Speed is the distance traveled per unit time

The speed of sound in air can be found using the equation:  a = Sqrt (γ•R•T)

where for air:
γ = ratio of specific heats = 1.4,
R = gas constant = 286 m²/s²/K
T = absolute temperature in °K (273.15 + °C)

At room temperature, 22°C (71.6°F), the speed of sound is 343.8 m/s (760 mph)

Some interesting facts about sound:

  • Sounds generally travels faster in solids and liquids than in gases.
  • You can estimate the distance from a lightning strike by counting the seconds that pass between seeing the lightning flash and hearing the thunder.  Take this duration an divide by 5 to get the distance away, in miles.
  • Humans normally hear sound frequencies between 20 Hz and 20,000 Hz.
  • Sound waves above 20,000 Hz are known as ultrasound, and sound waves below 20 Hz are known as infrasound.
  • Sound travel through water close to 4 times faster then through air.
  • The sound of a cracking whip occurs because the speed of the tip has exceeded the speed of sound.

Sound that is too loud can be a problem. The Occupational Safety and Health Administration (OSHA) has set limits on the noise exposure that an employee can be subjected. Exceeding these values can cause permanent damage to your ears and cause noise induced hearing loss. So, knowing and reducing the sound levels within a manufacturing operation is important.

OSHA Chart

EXAIR has many products that can help reduce the sound levels in your processes.  With products such Air Knives, Air Wipes, Air Amplifiers, Air Nozzles and Jets, and Safety Air Guns, strong, quiet and efficient blowoff, drying, and cooling can be performed.

Quiet Products

If you have questions about sound and keeping your sound levels in check or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

OSHA 29 CFR 1910.15(a) – Occupational Noise Exposure Limits

Hearing loss due to high noise levels is a common problem in many industrial facilities. Without the use of proper PPE, hearing loss can occur quickly. This is a serious concern as hearing loss is permanent and once the damage is done there’s no way to reverse it. Due to this risk, OSHA strictly enforces standard 29 CFR-1910.95(a).

This directive discusses the effects of noise and limits exposure based on the dBA. The table below indicates the maximum allowable exposure time to different noise levels. Sound levels that exceed these levels should first be addressed by proper engineering controls such as isolating the source of the sound from personnel or replacing the cause of the sound with something like an engineered compressed air nozzle. When such controls aren’t feasible, proper PPE must be worn to protect the operator.

OSHA Chart

Hearing loss can occur in as little as 30 minutes when exposed to sound levels 110 dBA or greater. Operators have a tendency not to use PPE as directed, if an OSHA inspector comes to your facility and notices that the sound levels exceed the maximum allowable level without protection hefty fines will be soon to follow. In this example from the United States Department of Labor, a company was fined a total of $143,000 for failing to protect their employees.

Model 9104 Digital Sound Level Meter

In order to identify the places or processes in your facility that are causing the problems, you’ll need a tool to measure the sound level. EXAIR’s easy to use Digital Sound Level Meter allows you to measure and monitor the sound level pressure in a wide variety of industrial environments. The source of the loud noise can then be identified and isolated so that corrective action can be taken. For compressed air related noise, EXAIR manufactures a wide variety of engineered compressed air products that can reduce the sound level dramatically. In many cases, EXAIR products are capable of reducing noise levels by as much as 10 dBA. Since the dBA scale is logarithmic, this equates to cutting the sound level in half!

Drilled pipes and open ended tubes are the common culprit for excessive noise levels. Replacing them with an engineered solution often eliminates the need for hearing protection.

If there’s processes within your facility that are above these limits and you’d like to eliminate relying on proper PPE, give an Application Engineer a call. We’ll help walk you through the selection process and make sure that when the OSHA inspector comes knocking you’re prepared!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD