EXAIR Digital Sound Level Meters Measure Noise Exposure Levels

slm-newlabel
Digital Sound Meter

EXAIR offers the model 9104 Digital Sound Level Meter.  It is an easy to use instrument for measuring and monitoring the sound level pressures in and around equipment and other manufacturing processes.

Sound meters convert the movement of a thin membrane due to the pressure waves of sound into an electric signal that is processed and turned into a readable output, typically in dBA.  The dBA scale is the weighted scale that most closely matches the human ear in terms of the sounds and frequencies that can be detected.

Noise induced hearing loss can be a significant problem for many workers in manufacturing and mining. To protect workers in the workplace from suffering hearing loss OSHA has set limits to the time of exposure based on the sound level.  The information in the OSHA Standard 29 CFR – 1910.95(a) is summarized below.

OSHA Noise Level

The EXAIR Digital Sound Level Meter is an accurate and responsive instrument that measures the decibel level of the sound and displays the result on the large optionally back-lit LCD display. There is an “F/S” option to provide measurement in either ‘slow’ or ‘fast’ modes for stable or quickly varying noises. The ‘Max Hold’ function will capture and hold the maximum sound level, and update if a louder sound occurs.

Certification of accuracy and calibration traceable to NIST (National Institute of Standards and Technology) is included.

If you have questions about the Digital Sound Level Meter, or would like to talk about any of the quiet EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

Minimize Exposure to Hazards Using the Hierarchy of Controls

The CDC (Center for Disease Control) published a useful guide called “Hierarchy of Controls” that details (5) different types of control methods for exposure to occupational hazards while showing the relative effectiveness of each method.

HierarchyControls
CDC Hierarchy of Controls

The least effective methods are Administrative Controls and PPE. Administrative Controls involve making changes to the way people perform the work and promoting safe practices through training. The training could be related to correct operating procedures, keeping the workplace clean, emergency response to incidents, and personal hygiene practices, such as proper hand washing after handling hazardous materials. PPE (Personal Protective Equipment) is the least effective method because the equipment (ear plugs, gloves, respirators, etc.) can become damaged, may be uncomfortable and not used, or used incorrectly.

In the middle range of effectiveness is Engineering Controls. These controls are implemented by design changes to the equipment or process to reduce or eliminate the hazard. Good engineering controls can be very effective in protecting people regardless of the the actions and behaviors of the workers. While higher in initial cost than Administrative controls or PPE, typically operating costs are lower, and a cost saving may be realized in the long run.

The final two, Elimination and Substitution are the most effective but can be the most difficult to integrate into an existing process. If the process is still in the design phase, it may be easier and less expensive to eliminate or substitute the hazard. Elimination of the hazard would be the ultimate and most effective method, either by removing the hazard altogether, or changing the work process to the hazardous task is no longer performed.

EXAIR can help your company follow the Hierarchy of Controls, and eliminate, or reduce the hazards of compressed air usage.

Engineers can eliminate loud and unsafe pressure nozzles with designs that utilize quiet and pressure safe engineered air products such as Air Nozzles, Air Knives and Air Amplifiers. Also, unsafe existing products such as air guns, can be substituted with EXAIR engineered solutions that meet the OSHA standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a).

Nozzles

In summary, Elimination and Substitution are the most effective methods and should be used whenever possible to reduce or eliminate the hazard and keep people safe in the workplace.

If you have questions about the Hierarchy of Controls and safe compressed air usage from any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Reduce Sound Level in your Factory, Improve Worker Safety and Comfort

Checking the sound level in your processes is an important aspect of ensuring a safe working environment for your employees. Loud noises and the exposure time can lead to significant health concerns. Permanent hearing loss, increased stress levels due to the uncomfortable work environment, and potential injury due to lack of concentration or inability to hear the surroundings are all examples of some risks associated with a noisy environment.

The Occupational Safety and Health Administration, known by most simply as OSHA, introduced Standard 29 CFR 1910.95(a) as a means of protecting operators from injury associated with high noise levels. The chart below indicates maximum allowable exposure time based on different noise levels. At just 90 dBA, an operator can operate safely for 8 hours. Open end pipe blowoffs and some air guns fitted with cross drilled relief holes will often result in noise levels in excess of 100 dBA. At 110 dBA, permanent hearing loss can be experienced in just 30 minutes!

OSHA Chart

The first step to lowering your sound level is to take a baseline reading of your various processes and devices that are causing the noise. EXAIR’s Sound Level Meter, Model 9104, is an easy to use instrument that provides a digital readout of the sound level. They come with an NIST traceable calibration certificate and will allow you to determine what processes and areas are causing the most trouble.

SoundMeter_new_nist225

From there, EXAIR has a wide range of Intelligent Compressed Air Products® that are designed to reduce compressed air consumption as well as sound levels. For noisy blowoffs where you’re currently using an open-ended pipe or a loud cross-drilled nozzle, EXAIR’s Super Air Nozzles are the ideal solution. Not only will they pay for themselves over time due to compressed air savings, but your operators will thank you when they’re able to hear later on in life!!

Drilled pipe is another common culprit of high noise levels. Rather than purchasing an engineered solution, the idea is that a simple drilled pipe is just as effective right? Not at all!! Not only does a drilled pipe produce exceptionally high sound levels, but the amount of compressed air used is also very inefficient. EXAIR’s Super Air Knife is available in lengths ranging from 3”-108” and has a sound level of just 69 dBA at 80 PSIG. At this sound level, operators won’t even require hearing protection at all!

SAK vs drilled pipe
EXAIR’s Super Air Knife is the ideal solution for replacing noisy, inefficient drilled pipe

With all of these products available in stock, EXAIR has the tools you need to reduce sound level in your processes. If you’d like to talk to an Application Engineer about any applications that you feel could benefit from a sound reduction, give us a call.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Reduce Sound Level with EXAIR’s Flat Super Air Nozzles

2san_blowaway
EXAIR’s Flat Super Air Nozzles have been blowing away the competition since 2003.

The patented design of EXAIR’s 1” and 2” Flat Super Air Nozzles make them a highly efficient option when seeking a powerful, flat airflow. A precise air gap across the width of the nozzle provides a forceful stream of high velocity, laminar airflow without consuming high amounts of compressed air and also resulting in a greatly reduced sound level compared to some of the alternative flat nozzles available in the market.

EXAIR’s Flat Super Air Nozzles are safe, reliable, and efficient. Here on the EXAIR Blog we frequently discuss dead-end pressure as explained in OSHA Standard 1910.242(b). This directive states that the when compressed air is used for cleaning purposes, the dead-ended pressure must not exceed 30 psig. When pressures greater than this occur, there is potential for an air embolism.

EXAIR’s Flat Super Air Nozzles cannot be dead-ended, which allows us to operate at pressures well above the 30 psig limit. Some competition markets their nozzles as “Extremely Quiet”, but a deeper look into their performance specifications shows that the published sound level reading was taken at a pressure of 29 psig. They must use a pressure of 29 psig because the nozzles are not OSHA compliant at pressures exceeding 30 psig. For the same competitive nozzle, there is no path for air to escape if the nozzle were to be dead-ended or pressed up against the skin. At 29 psig, the nozzle simply isn’t very effective as it doesn’t provide enough force for most applications. This very same nozzle, when operated at 80 psig, actually has a sound level of 85 dBA.

2inNozzlehand_800x

EXAIR’s Model 1122 delivers more force, more efficiently, and at a sound level of just 77 dBA at 80 psig. Remember, sound levels are expressed in dBA as a logarithmic function. This represents a decrease in sound level by 60%! If you’re looking for a means of reducing sound level in your plant, EXAIR’s 1” and 2” Flat Super Air Nozzles are just what you need.

In addition to being very quiet EXAIR’s flat super air nozzles integrate a shim used to adjust the air gap, which changes the maximum airflow and force. Thicker shims will produce more force and flow, while a thinner shim would do just the opposite.Some applications require more force and some require less, which is not always achieved through simple pressure adjustments so the shims provide the flexibility needed for success.

They’re on the shelf in stock. With same day shipping on orders placed by 3:00 ET and an Unconditional 30-Day Guarantee, there’s no excuse to not give them a try!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Is It Safe To Use Compressed Air?

Think about it…compressed air is, by definition, gas under pressure: potential (stored) energy.  This energy is intended to do work, like operation of pneumatic tools, actuation of pneumatic cylinders, debris removal with an air gun or blow off device, and (even though I haven’t done it in a while) my personal favorite:

High pressure compressed air is meticulously made, prepared, and stored to ensure the number of surfaces equals the number of dives.

Uncontrolled, unplanned, or accidental releases of stored energy (regardless of the source) are inherently dangerous, and great care must be taken to guard against such incidents.  This is accomplished, primarily, in three areas:

*Operation.  This might be the most prevalent, because it involves the greatest number of personnel (e.g., everyone) as well as the ways compressed air is used (e.g., all of them.)  It’s also the area where the most involved people (the operators) have the most control:

  • Personal protection.  Don’t even think about operating a compressed air device without eye protection.  Ever.  Hard stop.  Also, if the operation involves flying debris, a full face shield, long sleeves, gloves, etc. might be called for.  Hearing protection may be required as well…keep in mind, even if an engineered device (like any of EXAIR’s Intelligent Compressed Air Products) generates a relatively low sound level, the impingement noise of the air flow hitting the object can reach dangerous levels.
  •  Personnel cleaning is prohibited.  The risk of injury to the eyes, respiratory system, and other parts is just too great to rely on personal protective equipment that’s designed for use while discharging compressed air AWAY from the body.  While this is expressly prohibited in certain situations, OSHA has long recognized it as good practice for all industries.
  • No horseplay.  ’nuff said.  Plenty of better ways to have fun at work.

*Design.  This one usually has the advantage of being traceable to a small number of people, and is also the one that’s most likely to be documented.  This is where it starts…if the system is designed to fail, it doesn’t matter how much care the operators take:

  • Supply lines, fittings, and hoses must be rated for use with compressed air, up to and exceeding the maximum discharge pressure of the air compressor.
  • This goes for any tools, blow off devices, components, etc., serviced by the air system.  The only thing worse than a component failing is a component failing in your hand.
  • Shut off valves should be located as close as practical to point(s) of operation.  This allows you to quickly secure the flow of compressed air to a failed component, hose, etc., and prevent further damage or risk of injury.
  • Hoses shouldn’t be run across the floor, where they can become a trip hazard or subject to damage from stepping on them.   This is a surefire way to find out the value of shut off valves (see above.)

*Product specification.  Or, more simply put, using the right tool for the job.  A broader discussion could include efficiency and performance, but we’ll stay within the confines of safety for the purposes of this blog:

  • Be mindful of dead end pressure.  Blow off devices, especially hand held ones like air guns, are oftentimes fitted with a simple open-end discharge.  If this is pushed into a part of the body, the pressurized air can break the skin and cause an air embolism.  This is a serious injury, and can be fatal if it reaches the heart, lungs, or brain.
    • This is a key consideration to OSHA Standard 1910.242(b), which limits the downstream pressure when compressed air is used for cleaning to 30psi.
    • EXAIR products are compliant with this Standard by design…there’s always a relief path for the air pressure; they can’t be dead ended.
Because the compressed air exits through a series of holes, recessed between a ring of fins, any attempt to block the air flow will simply send it in another direction.
  • Harmful sound levels are a consideration as well.  As stated above, hearing protection is required in many cases, but sound levels can be mitigated through the use of engineered products.  EXAIR Intelligent Compressed Air Products, as a result of their high entrainment, generate a boundary layer of air flow that leads to dramatically lower sound levels than a similar-sized open end blow off device.

If you’d like to explore ways to make your compressed air system safer, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

EXAIR Products: Silencing Mufflers Overview

OSHA Standard 29 CFR 1910.95(a), relating to permissible noise exposure levels, states that when employees are subjected to sounds in excess of 90 dBA, some type of control should be used to reduce the sound level. In an industrial setting, it’s very common to find the exhausting air from air operated devices such as actuators, diaphragm pumps or cylinders for example, to produce sound levels well above the allowable limits set forth in the Standard. EXAIR offers a variety of different Silencing Mufflers that help to reduce this  noise level, while also increasing operator safety.

 

Reclassifying Mufflers are available in 1/8″, 1/4″, 3/8″, 1/2″, 3/4″ and 1″ NPT sizes

EXAIR’s Reclassifying Mufflers offer noise reduction up to 35 dB and are available in sizes ranging from 1/8″ to 1″ NPT. These types of mufflers are often considered”dual-purpose” as they not only reduce the noise level but also remove oil from the exhaust airflow by incorporating a removable filter element.  The exhausting oil mist is reduced from 50 PPM (parts per million) to only 0.015 PPM, when the device is operated at 100 PSIG. In addition, there is a bowl on the bottom to capture any residual oil and a 1/4″ tube adaptor to allow for easy draining.

Sintered Bronze Mufflers are available in #10-32, 1/8″, 1/4″, 3/8″, 1/2″, 3/4″, 1″, 1-1/4″ and 1-1/2″ NPT sizes, as well as 1/2-20 UNF female for use with solenoid valves
Straight Through Mufflers are available in 1/4″, 3/8″ and 3/4″ MNPT x FNPT

Sintered Bronze Mufflers are a relatively low cost option, commonly used with air cylinders as they can be installed quick and easy. We offer 1o different sizes, ranging from #10-32 for small installations, up to 1-1/2″ NPT for larger scale applications. The noise reduction depends on the size of the muffler and back pressure, which can occur from dirt or particulate clogging the muffler, restricting the exhausting airflow from passing through the porous sintered bronze.

Our Straight Through Mufflers are made of corrosion resistant aluminum and are lined with a sound absorbing foam, capable of reducing noise levels up to 20 dB. We offer 3 different sizes, 1/4″, 3/8″ and 3/4″ NPT, with a male thread on one end and female thread on the other. We incorporate this muffler design into our Cold Guns and Adjustable Spot Coolers and they are commonly used with our Vortex Tubes, Cabinet Cooler® Systems and E-Vac® Vacuum Generators as well.

Heavy Duty Mufflers are available in 1/4″ and 3/8″ FNPT

Lastly, the Heavy Duty Mufflers feature an internal, 50 mesh stainless steel screen, to protect against contaminants in the airflow,  and a corrosion resistant aluminum outer shell. In most cases, the sound reduction can be as high as 14 dB and we offer 2 different sizes, 1/4″ and 3/8″ FNPT. These types of mufflers are regularly used on the hot air exhaust of our Vortex Tubes.

For help with product selection or to discuss a particular process, please contact one of our application engineers at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

Improving Auger Cleaning Process Using 2″ Flat Super Air Nozzles And Swivels

I recently worked with a customer who was looking to improve the cleaning process on the  inside of one of their screw augers. They were currently using a couple of 1/4″ pipes as air wands to clean the left over powder on the auger blades and direct it toward a chute at the bottom which fed into another auger used for recovery. While the setup worked somewhat, they were concerned with the amount of air they were using as well as the OSHA safety concerns associated to using open ended pipes and excessive noise levels.

The customer was able to send a sketch of their current setup and after some further conversations, I recommended our Model # 1122 2″ Flat Super Air Nozzle and our Model # 9053 1/4″ NPT Swivel Fitting. The 2″ Flat Super Air Nozzle produces a 2″ wide, high velocity laminar airflow and uses only 21.8 SCFM (80 PSIG) while maintaining a low sound level of only 77 dBA. The Swivel Fitting allows for 50 degrees of movement, so they can achieve the best angle to direct the air to the critical areas.

2″ Flat Super Air Nozzle
Swivel Fittings available from M4 up to 1″ NPT

All of our Air Nozzles are engineered to meet or exceed OSHA Standard 1910.24(b) for 30 PSIG dead end pressure, they cannot be dead-ended, there is always a path for the air to safely exit so the outlet pressure will never reach 30 PSIG. In addition, our products are going to meet the OSHA Standard CFR 29 – 1910.95(a) for allowable noise exposure levels as well.

If you are looking to reduce air consumption and noise while improving operator safety, give us a call at 800-903-9247 for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN