Does a 38 Day Simple ROI Sound Good? Use Engineered Compressed Air Blowoff Products!

After getting a baseline measurement of the air consumption in your facility and locating and fixing leaks in your system, it’s time to begin implementing some changes. Step 3 of the 6 Steps to Optimizing Your Compressed Air System covers upgrading your blowoff, cooling, and drying operations using engineered compressed air products.

sixsteps_3

This step can have the most impact when it comes to your bottom line. The energy costs associated with the generation of compressed air make it one of the most expensive utilities for any industrial environment. Because of this, we need to ensure that the places in your facility that are using compressed air are doing so efficiently.

EXAIR manufactures a variety of products that can help to ensure you’re using your compressed air in the best way possible. What it may seem simple, easy, and cheap to use something like an open-ended pipe or tube for blowoff, the fact of the matter is that the volume of air that these homemade solutions use quickly make them more expensive. Super Air Nozzles have been designed to entrain ambient air along with the supplied compressed air, allowing you to achieve a high force from the output of the nozzle while keeping compressed air usage to a minimum. In addition to saving air, they’ll also provide a significant reduction in overall sound level.

drilled pipe
homemade drilled pipe

Another product that can be used to increase the efficiency of your blowoff processes is the Super Air Knife. Available in lengths ranging from 3”-108” and in a variety of materials, the Super Air Knife is the ideal replacement for inefficient drilled pipes. Again, it may seem cheaper to just drill a few holes in a pipe whenever you need to cover a wide area but the volume of air consumed in addition to the incredibly high sound level will quickly drain your compressor. The Super Air Knife is also designed to entrain ambient air, at a rate of 40:1! Allowing you to take advantage of the free ambient air in addition to the supplied air.

Let’s compare the costs difference between a homemade drilled pipe and EXAIR’s Super Air Knife. The Super Air Knife has a precisely set air gap across the full length of the knife, allowing for an efficient and quiet laminar airstream. When compared to a drilled pipe, the air consumption is dramatically reduced as is the sound level. For example, let’s take an 18” section of drilled pipe, with 1/16” diameter holes spaced out every ½”. At 80 PSIG, each hole consumes 3.8 SCFM. With a total of 37 holes, this equates to a total of 140.6 SCFM.

3.8 SCFM x 37 = 140.6 SCFM

A Super Air Knife, operated at 80 PSIG with .002” stock shim installed will consume a total of 2.9 SCFM per inch of knife. An 18” SAK would then consume just 52.2 SCFM.

2.9 SCFM x 18 = 52.2 SCFM

140.6 SCFM – 52.2 SCFM = 88.4 SCFM saved 

Replacing an 18” drilled pipe with a Super Air Knife represents a total reduction in compressed air consumption of 63%! How much does this equate to in $$$? A reasonable average of cost to generate compressed air is about $0.25/ 1000 SCF. Let’s assume just a 40hr workweek:

88.4 SCFM x 60 mins x $0.25/1000 SCF = $1.33/hr

$1.33 x 40hr workweek = $53.20 USD

$53.20 x 52 weeks/year = $2,766.40 USD in yearly savings

The 2019 list price on a Model 110018 Super Air Knife is $397.00. By replacing the homemade solution with an 18” Super Air Knife, the return on investment is just over 38 working days of an 8-hr shift. If your plant runs multiple shifts, or works on weekends, it pays for itself even quicker.

Not only are these homemade solutions expensive to operate, they’re not safe either. Familiarize yourself with both OSHA 29 CFR 1910.95(a) and 29 CFR 1910.242(b) and you’ll learn just how expensive it can be if you were to be found using these devices during a random OSHA inspection. Make sure you’re utilizing the most expensive utility as efficiently and safely as possible. If you need help with determining which products are best suited for your application, give us a call. Our team of Application Engineers is ready to help!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

EXAIR Digital Sound Level Meters Measure Noise Exposure Levels

slm-newlabel
Digital Sound Meter

EXAIR offers the model 9104 Digital Sound Level Meter.  It is an easy to use instrument for measuring and monitoring the sound level pressures in and around equipment and other manufacturing processes.

Sound meters convert the movement of a thin membrane due to the pressure waves of sound into an electric signal that is processed and turned into a readable output, typically in dBA.  The dBA scale is the weighted scale that most closely matches the human ear in terms of the sounds and frequencies that can be detected.

Noise induced hearing loss can be a significant problem for many workers in manufacturing and mining. To protect workers in the workplace from suffering hearing loss OSHA has set limits to the time of exposure based on the sound level.  The information in the OSHA Standard 29 CFR – 1910.95(a) is summarized below.

OSHA Noise Level

The EXAIR Digital Sound Level Meter is an accurate and responsive instrument that measures the decibel level of the sound and displays the result on the large optionally back-lit LCD display. There is an “F/S” option to provide measurement in either ‘slow’ or ‘fast’ modes for stable or quickly varying noises. The ‘Max Hold’ function will capture and hold the maximum sound level, and update if a louder sound occurs.

Certification of accuracy and calibration traceable to NIST (National Institute of Standards and Technology) is included.

If you have questions about the Digital Sound Level Meter, or would like to talk about any of the quiet EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

6 Steps to Optimizing Your Compressed Air System

If you’re a follower of the EXAIR Blog, you’re probably well aware that compressed air is the most expensive utility in an industrial environment. The average cost to generate 1000 Standard Cubic Feet of compressed air is $0.25. If you’re familiar with how much air you use on a daily basis, you’ll understand just how quickly that adds up.

To make matters worse, many compressed air systems waste significant amounts of compressed air just through leaks. According to the Compressed Air Challenge, a typical plant that has not been well maintained will likely have a leak rate of approximately 20%!! Good luck explaining to your finance department that you’re carelessly wasting 20% of the most expensive utility.

SBMart_pipe_800x

6 Steps from Catalog

The best way to save energy associated with the costs of generating compressed air is pretty straightforward and simple: TURN IT OFF! Placing valves throughout your distribution system allows you to isolate areas of the facility that may not need a supply of compressed air continuously.

Even a well-maintained system is going to have a leakage rate around 10%, it’s darn near impossible to absolutely eliminate ALL leaks. By having a valve that allows you to shut off the compressed air supply to isolated areas, you’re able to cut down on the potential places for leaks to occur.

You’re likely not running each and every machine continuously all day long, if that’s the case why not shut off the air supply to those that aren’t running? When operators go to lunch or take a break, have them turn off the valves to prevent any wasted air. The fact of the matter is that taking this one simple step can truly represent significant savings when done diligently.

You wouldn’t leave your house with all the lights and TV on, so why leave your compressed air system running when it’s not in use? Even if everyone’s left for the day, leaks in the system will cause the compressor to keep running to maintain system pressure.

Taking things one step further, EXAIR’s Electronic Flow Control (EFC) utilizes a solenoid controlled by photoelectric sensor that has the ability to shut off the compressed air when no part is present. If you’re blowing off parts that are traveling along a conveyor with space in between them, there’s no need to continuously blow air in between those parts. The EFC is able to be programmed to truly maximize your compressed air savings. The EFC is available in a wide range of different capacities, with models from 40-350 SCFM available from stock and systems controlling two solenoid valves for larger flowrates available as well.

newEFC2_559

It’s no different than turning off your house lights when you leave for work each day. Don’t get caught thinking compressed air is inexpensive “because air is free”. The costs to generate compressed air are no joke. Let’s all do our part to reduce energy consumption by shutting off compressed air when it isn’t necessary!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Upgrade Blowoff Applications with Engineered Products to Increase Safety and Efficiency

At EXAIR, it’s our business to make sure that you get the most out of your compressed air system.  We’ve got a Six Step plan to help you do just that, and one of those steps is the topic of today’s blog:

We have a couple of ways to help with step #1.  You can use a Digital Flowmeter to measure your total compressed air usage, and take advantage of our Efficiency Lab service to determine the consumption of individual compressed air devices that may be running up the total.  Based on our performance tests of those devices, we can recommend suitable EXAIR Intelligent Compressed Air Products to replace them with, along with the expected reductions in air consumption & noise levels…quieter is always better too.

We’re going to skip right over Step #2…just for now…but if you can’t wait, click on the picture above for more on finding & fixing leaks.

Once you get our recommended replacements in (I mean, why wouldn’t you?), they’re going to be part of your compressed air system, so naturally, we want to make sure you get the most out of them as well.  Key considerations are suitable supply lines, and proper installation.

In the case of a Super Air Nozzle or Air Jet, these are oftentimes one and the same.  They’re all small enough, and lightweight enough, to be adequately supported by compressed air piping (assuming the piping is adequately supported,) metal tubing (via a compression fitting adapter,) or even mounting solutions like our Stay Set Hoses.

Just a few ideas for installing an EXAIR Super Air Nozzle

Sometimes, though, you need a firm, vibration-resistant mounting…that’s where we recommend our Swivel Fittings.  A hex retainer tightly locks the ball in position, but allows for easy repositioning when loosened.  They come in standard NPT sizes from 1″ NPT down to 1/8″ NPT, and we even have them for the M4, M5, and M6 metric threads for our Atto, Pico, and Nano Super Air Nozzles.

Typical threaded fittings are limited in the angles you can achieve. EXAIR Swivel Fittings provide 50° of adjustability.

Even a highly efficient blow off needs to be aimed well in order to do its job well.  If you’d like to discuss how to get the most out of your compressed air system – or our products – give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

What is Sound and Interesting Facts About Sound

In physics, sound is a wave of pressure. It occurs in a medium, which can be a solid, liquid or gas. Sound cannot travel through a vacuum, such as in space. The wave of pressure reaches our ears and causes the ear drum to vibrate, which then goes through a complex process to ultimately be perceived as audible sound.

There are several characteristics of sound waves that can be measured and help define the sound. A sound wave can be visualized as a repeating sinusoidal wave (see below), and can be described by these properties – frequency and wavelength, amplitude, and speed.

Sound Wave
Sound Wave
  • Frequency is the number of cycles in 1 second, and is measured in Hertz (Hz)
  • Wavelength is the distance over which 1 cycle occurs, and for audible sound is  between 17 m and 17 mm long
  • Amplitude is the measure of its change over a single period, and normally a measure of sound loudness
  • Speed is the distance traveled per unit time

The speed of sound in air can be found using the equation:  a = Sqrt (γ•R•T)

where for air:
γ = ratio of specific heats = 1.4,
R = gas constant = 286 m²/s²/K
T = absolute temperature in °K (273.15 + °C)

At room temperature, 22°C (71.6°F), the speed of sound is 343.8 m/s (760 mph)

Some interesting facts about sound:

  • Sounds generally travels faster in solids and liquids than in gases.
  • You can estimate the distance from a lightning strike by counting the seconds that pass between seeing the lightning flash and hearing the thunder.  Take this duration an divide by 5 to get the distance away, in miles.
  • Humans normally hear sound frequencies between 20 Hz and 20,000 Hz.
  • Sound waves above 20,000 Hz are known as ultrasound, and sound waves below 20 Hz are known as infrasound.
  • Sound travel through water close to 4 times faster then through air.
  • The sound of a cracking whip occurs because the speed of the tip has exceeded the speed of sound.

Sound that is too loud can be a problem. The Occupational Safety and Health Administration (OSHA) has set limits on the noise exposure that an employee can be subjected. Exceeding these values can cause permanent damage to your ears and cause noise induced hearing loss. So, knowing and reducing the sound levels within a manufacturing operation is important.

OSHA Chart

EXAIR has many products that can help reduce the sound levels in your processes.  With products such Air Knives, Air Wipes, Air Amplifiers, Air Nozzles and Jets, and Safety Air Guns, strong, quiet and efficient blowoff, drying, and cooling can be performed.

Quiet Products

If you have questions about sound and keeping your sound levels in check or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Understanding Decibels & Why OSHA Pays Attention to Your Noise Exposure

In the simplest of metric terms, a decibel is one-tenth of a bel.  But, historically, bel was a unit created to honor Alexander Graham Bell who invented the telephone.  In the early days with telephone wires, they noticed that the signal strength would decay over a long distance.  In order to determine power requirements to connect people for communications, they determined that they could use the ratio of power levels.  As a start, it had to be based on a minimum amount of power required for a person to hear on the telephone.  They found that the signal power level to generate an angular frequency of 5000 radians per second would be that minimum value as determined by an average number of people.  They used this mark as a reference point in the ratio of power levels.  Because of the large variations in values, they simplified the equation on a base-10 log scale and dividing the bel unit by 10.  Thus, creating the measurement of decibel.

Today, this same method is used to measure sound.  Like frequency waves that travel through the telephone wires, pressure waves travel through the air as sound.  This sound pressure is what our ears can detect as loudness, and it has a pressure unit of Pascals (Pa).  As an example, a small sound pressure would be like a whisper while a large sound pressure would be like a jet engine.  This is very important to know as high sound pressures, or loudness, can permanently damage our ears.

With sound pressures, we can determine the Sound Pressure Level (SPL) which is measured in decibels (dB).  Similar to the equation for the telephone power signals above, the SPL also uses a ratio of sound pressures in a base-10 logarithmic scale.  For a minimum reference point, an average human can just start to hear a sound pressure at 0.00002 Pa.  So, the equation for measuring sound levels will use this minimum reference point as shown in Equation 1.

Equation 1:

L = 20 * Log10 (p/pref)

where:

L – Sound Pressure Level, dB

p – Sound pressure, Pa

pref – reference sound pressure, 0.00002 Pa

Why is this important to know the decibels?  OSHA created a chart in 29CFR-1910.95(a) that shows the different noise levels with exposure times.  This chart was created to protect the operators from hearing loss in work environments.  If the noise level exceeds the limit, then the operators will have to wear Personal Protection Equipment (PPE), or suffer hearing damage.  EXAIR offers a Sound Level Meter, model 9104, to measure sound levels in decibels.  It comes calibrated to accurately measure the sound to determine if you have a safe work environment.

Sound Level Meter

There is a term that is used when it comes to loud noises, NIHL.  This stands for Noise Induced Hearing Loss.  Once hearing is damaged, it will not come back.  To keep your operators safe and reduce NIHL, EXAIR offers many different types of blow-off products that are designed to decrease noise to a safe level.  So, here’s to Alexander Graham Bell for creating the telephone which can be used to contact EXAIR if you have any questions.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Photo of Telephone by Alexas_FotosCC0 Create Commons

General Good Ideas For The Compressor Room

When considering your compressor room all too often the phrase applies “out of sight and out of mind”.  Of course, we all know that is not a good approach to the compressor room or really anything in life.  Unfortunately, many of us take for granted that very system that delivers the power to keep our machines, equipment and tools operating.

Air Compressor
Compressor Room Located Outdoors

So, what can we do keep the ‘lungs” of our plants performing reliably and efficiently?  Since this Blog is about “General Good Ideas For The Compressor Room”, I have some points below for your consideration.

  • Ideally the compressor room should be centrally located to minimize the length of the pipes and allows for easier noise control. With long piping runs leaks become more likely and frictional losses are increased.
  • The compressor room should be sized to allow for easy maintenance and future expansion.
  • For efficient operation air compressors need clean intake air. Intake air that is dusty, dirty or contains gaseous contamination will reduce the efficiency and possibly the longevity of your equipment.
  • The compressor room needs adequate ventilation since air compressors generate significant heat. If excessive heat is allowed to build up it reduces the efficiency of the air compressor raising utility costs, causes compressor lubricant to break down prematurely that could possibly result in increased maintenance and compressor failure.
  • What is the velocity of the air through the main headers? If the speed is above 1200 FPM many dryers have reduced efficiency and speeds greater than this can also carry moisture past the drainage drop legs.
  • Excess friction caused by too small of a diameter piping creates pressure loss, which reduces efficiency and if the compressor is ran above its pressure rating to overcome the frictional losses increases energy consumption, maintenance costs and down time.

Now that your compressor room is shipshape in Bristol fashion, you might think that all is well.  While that may be true, chances are there are other significant additional savings to be had.  EXAIR specializes in point of use compressed air products that are highly efficient and quiet!  If you have any blow-offs that are open tube or howl as loud as the ghost of Christmas yet to come, check out EXAIR’s Super Air Nozzles.  They are highly efficient and quiet, in fact they meet OSHA Standard 29 CFR – 1941.95 for maximum allowable noise and OSHA Standard 29 CFR 1910.242 (b) for higher than 30 PSIG blow-off pressure.  All of EXAIR’s compressed air products are engineered to minimize compressed air consumption and take advantage of the Coanda effect.  Simply stated EXAIR’s highly engineered, intelligent designs entrain (combine) ambient air with the compressed air supply which saves you money!

nozzle_anim_twit800x320
EXAIR Super Air Nozzle entrainment

EXAIR also offers the Ultra Sonic Leak Detector.  Simply point the device at a suspected leak which are typically found at unions, pipes, valves and fittings from up to 20’ away.   Plants that are not maintaining their plumbing can waste up to 30% of their compressors output through undetected leaks.

ultrasonic_2
EXAIR Ultra Sonic Leak Detector

EXAIR has a complete optimization product line that the Ultra Sonic Leak Detector is in that includes the Electronic Flow Control, Digital Flowmeter’s and a Digital Sound Level Meter.  All designed to either increase the safety or efficiency of your compressed air usage.

EXAIR has 15 other product lines all designed to increase your process efficiency and save you money by using you compressed air supply efficiently.  Why not visit the EXAIR website or call and request a free catalog?

When you are looking for expert advice on safe, quiet and efficient point of use compressed air products give us a call.   We would enjoy hearing from you!

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitte
Like us on Facebook

 

Image taken from the Best Practices for Compressed Air Systems Handbook, 2nd Edition