Compressed Air: Only as Intelligent as Your Accessories

How often have you seen a compressed air system functioning at 100% efficiency? Do you have the right accessories to provide a source of clean air at the proper pressure? Even with the right accessories, have they been maintained in good working order? Chances are that some of your components are in fact in need of attention such as a clogged filter, improper regulator or maybe undersized hoses. Your air compressor is only as intelligent as the weakest component in your system.

This is why you need to make sure all of your EXAIR accessories are properly fitted and located in the most efficient locations. Your compressor is capable of producing compressed air but your accessories will allow it to function the way it is meant to function. Using accessories and using them in the right manner is the intelligent choice, it will minimize your maintenance while increasing your energy efficiency for the life of your compressor. Let’s review a few of the most important compressed air accessories you should consider.

Filter Separators: Filters remove and separate water, dirt and scale from your compressed air system to keep your air clean and output pure. Clean air keeps your air products and machines more efficient and reduce the frequency of maintenance. Filter Separators will accumulate particulate matter naturally so they will need cleaned and/or replaced filter elements regularly depending on your operating environment. EXAIR provides Filter Separators and recommend they be installed prior to an Oil Removal Filter, pressure regulator or valve.

Filter Separators

Oil Removal Filters: Many air compressors use oil to lubricate therefore the risk of oil in your air lines is imminent. Although oil may not affect the compressed air system itself it can become a problem with products which do not require oil and have small air gaps. It can also be problematic if oil is blowing on to packaging or the final product. Keep this in mind and remember that oil should be removed from compressed air lines in certain instances. EXAIR’s oil removal filters will remove oil and solid particulate found in many compressed air systems.

Pressure Regulators: Regulators adjust the air pressure being supplied by your air compressor to the level that you require at the point of use. For instance your compressor generates 150 PSI but your compressed air product only requires 80 PSIG, the regulator can adjust the pressure to the desired setting and also relieve undue pressure on fittings, hoses and tools. Reducing pressure at the end-use product will also reduce the air consumption. Almost every compressed air application will use tools with varying pressure ratings making EXAIR Pressure Regulators a must-have accessory.

Hoses & Fittings: Hoses and fittings wear with time. Common issues are kinking, bending, leaks and contaminants, they should be checked often and replaced when required. Another common problem with hoses is that they are either too long and not as efficient or too short which can cause your employees reduced productivity. EXAIR offers STAY SET Hoses, Conveying Hose, Coiled Hoses and Compressed Air Hoses of different sizes and lengths. Our selection of compressed air fittings insures you can get all you need from one location.

Receiver Tanks: The use of receiver tanks can improve your overall system efficiency. Storage receivers can be placed near equipment that consume short duration of high flows of compressed air that might cause localized low pressure. EXAIR’s 60 Gallon Receiver Tank placed near the point of use can smooth out the high flows so as not to cause the start of an extra air compressor or cause localized low pressure.

If you would like more information regarding how proper use of EXAIR’s accessories can make your compressed air consumption more intelligent please contact me or any of our qualified Applications Engineers to discuss your applications.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

 

Optimizing Compressed Air Systems in Six Easy Steps

Knowing your compressed air needs and understanding the limitations of your equipment is essential when optimizing your compressed air system. Everything about compressed air systems are interrelated. Items putting demand on your system can and will effect how the equipment supplying the demand will operate. Taking a holistic approach when optimizing your compressed air system will not only give you a better understanding of your supply and demand requirements but will also serve as the most efficient means to optimize your process. Now lets look at the six steps to optimizing.

  1. Measure: the air consumption You must create a baseline to understand your demand requirements. How can you measure your improvements if you do not understand your total demand or baseline? Installing an EXAIR Flow Meter to your main air lines will help identify the amount of compressed air demand you have and help identify areas of concern.
  2. Find and fix leaks in the system: The repair of compressed air leaks is one of easiest ways to gain energy savings. In most cases all you need is a keen sense of hearing to locate a leak. Once a you have confirmed a leak then the make the necessary repairs. Harder to find leaks may require tools such as EXAIR’s Ultrasonic Leak Detector. This is a hand held high quality instrument that can be used to locate costly air leaks.
  3. Upgrade your blow off, cooling and drying operations: Updating your compressed air process tooling can save you energy and help you comply with OSHA noise and safety regulations. An example would be to replace old blow off or open pipe systems with EXAIR Safety Air Nozzles. Replacing open copper tubes or pipes can amount up to 80% air savings. You achieve lower sound levels and significant energy savings.
  4. Turn off the compressed air when it isn’t in use: It sounds obvious but how many times has an operator left for a break or lunch and doesn’t shut off the compressed air for his/her station? The minutes add up to a significant amount of time annually meaning there is opportunity for energy savings. The use of solenoid valves will help but EXAIR’s Electronic Flow Control (EFC) will dramatically reduce compressed air costs with the use of a photoelectric sensor and timing control.
  5. Use intermediate storage of compressed air near the point of use: The use of storage receivers can improve your overall system efficiency in a number of ways. For example, using a main air receiver at the compressor room can make load/unload compressor control more efficient. Localizing receiver tanks such as EXAIR’s 9500-60 sixty gallon receiver tank by the point of use for a high demand process will stabilize the demand fluctuations allowing a more fluid operation.
  6. Control the air pressure at the point of use to minimize air consumption: The use of pressure regulators will resolve this issue. Using regulators you can control the amount of air being processed at each point of use. EXAIR offers different sized pressure regulators depending upon your air line and process requirements. Regulating the compressed air to the minimum amount required and will reduce your overall demand resulting in annual savings and a payback schedule.

Compressed air optimization can definitely be implemented using low cost and manual procedures but sometimes you will need a higher level means to achieve your goal. EXAIR has many optimization products to support your efforts. You can review our catalog, blogs and videos at www.EXAIR.com or by calling 800.903.9247 and any of our qualified Application Engineers will assist you.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

Six Steps to Compressed Air Optimization: Step 3 – Use Efficient and Quiet Engineered Products

Compressed air is expensive, and you should treat it that way.  Frequent readers of the EXAIR Blog are familiar with our Six Steps to Compressed Air Optimization, and you may have seen these recent installments on Steps 1 and 2:

Six Steps to Optimization: Step 1 – Measure the Air Consumption

Six Steps to Compressed Air Optimization: Step 2 – Find and Fix Leaks

Now, there isn’t a strict order in which you MUST perform these steps, and they’re not all applicable in every air system (looking at you, Step 5: Use Intermediate Storage,) but these are likely the steps that a certified auditor will take, and the order in which they’ll take them.  If you’re looking for immediate, quantifiable results, though, Step 3 is a great place to start.  Consider:

  • A 1/4″ copper tube blow off can consume as much as 33 SCFM when supplied with compressed air at 80psig.  It’ll give you a good, strong blow off, for sure.  You can crimp the end and get that down to, say, 20 SCFM or so.  Or, you can install a Model 1100 Super Air Nozzle with a compression fitting, and drop that to just 14 SCFM.
    • If you’re tracking your compressed air usage, you’ll see that replacing just one of them saves you 45,600 Standard Cubic Feet worth of compressed in one 5 day (8 hour a day) work week.  That’s $11.40 in air generation cost savings, for a $42 (2020 List Price) investment.
    • If you spend time in the space where it’s installed, you’ll notice a dramatic improvement in the noise situation.  That sound level from the copper tube is likely over 100 dBA; the Super Air Nozzle’s is only 74 dBA.

This user was only a handful of compression fittings & nozzles away from over $800 in annual compressed air savings.

  • Drilled pipes are another common method to create a blow off.  They’re easy & cheap, but loud & expensive to operate.
    • A pipe drilled with 1/8″ holes and supplied @80psig will consume 13 SCFM per hole, and the holes are typically drilled on 1/2″ centers.
    • An EXAIR Super Air Knife consumes only 2.9 SCFM per inch of length, and because it’s an engineered product, it’s a LOT quieter as well.  Drilled pipes are, essentially, open ended blow offs just like the copper tube mentioned above.  When you let compressed air out of a hole like that, all the potential energy of the pressure is converted to force…and noise.
    • Drilled pipes are among the worst offenders; almost always well in excess of 100 dBA.  Super Air Knives generate a sound level of only 69 dBA with 80psig compressed air supply.  They are, in fact, the quietest compressed air blowing product on the market today.

This Model 110048 48″ Aluminum Super Air Knife replaced a drilled pipe for over $5,000 annual compressed air savings.

These aren’t just theoretical “for instances” either – the data, and the photos above, come from actual Case Studies we’ve performed with real live users of our products.  You can find them here, and here (registration required.)

These are two examples of EXAIR product users who only used Step 3 of our Six Steps, although BOTH of them were already practicing Step 4 (Turn off the compressed air when it isn’t in use)…they had their blow offs supplied through solenoid valves that were wired into the respective machine controls, and the Air Knife user HAD to do Step 6 (Control the air pressure at the point of use) to keep their product from being blown clear off the conveyor..

But we’ll be happy to help you with optimizing your compressed air system using any or all of the Six Steps. Give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Measuring And Adding Sound Levels Together

What sound level do you get when you feed an EXAIR Super Air Nozzle at 80psig? What if there are two of them?  Or three?  Grab your scientific calculators, folks…we’re gonna ‘math’ today!

But first, a little explanation of sound power & sound pressure:

Strictly speaking, power is defined as energy per unit time, and is used to measure energy generation or consumption.  In acoustics, though, sound power is applicable to the generation of the sound…how much sound is being MADE by a noisy operation.

Sound pressure is the way acoustics professionals quantify the intensity of the sound power at the target.  For the purposes of most noise reduction discussions, the target is “your ears.”

The sound levels that we publish are measured at a distance of 3 feet from the product, to the side.  The units we use are decibels, corrected for “A” weighting (which accounts for how the human ear perceives the intensity of the sound, which varies for different frequencies,) or dBA.  Also, decibels follow a logarithmic scale, which means two important things:

  • A few decibels’ worth of change result in a “twice as loud” perception to your ears.
  • Adding sources of sound doesn’t double the decibel level.

If you want to know how the sound level from a single source is calculated, those calculations are found here.  For the purposes of this blog, though, we’re going to assume a user wants to know what the resultant sound level is going to be if they add a sound generating device to their current (known) situation.

Combined Sound Level (dBA) = 10 x log10[10SL1/10 + 10SL2/10 + 10SL3/10 …]

Let’s use an EXAIR Model 1100 Super Air Nozzle (rated at 74dBA) as an example, and let’s say we have one in operation, and want to add another.  What will be the increase in dBA?

10 x log10[1074/10 + 1074/10] = 77.65 dBA

Now, there are two reasons I picked the Model 1100 as an example:

  • It’s one of our most versatile products, with a wide range of applications, and a proven track record of efficiency, safety, and sound level reduction.
  • We proved out the math in a real live experiment:

Why do I care about all of this?  My Dad experienced dramatic hearing loss from industrial exposure at a relatively young age…he got his first hearing aids in his early 40’s…so I saw, literally up close and very personal, what a quality of life issue that can be.  The fact that I get to use my technical aptitude to help others lower industrial noise exposure is more than just making a living.  It’s something I’m passionate about.  If you want to talk about sound level reduction in regard to your use of compressed air, talk to me.  Please.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook