Video Blog: Compressed Air Sensor/Solenoid Control for Maximum Efficiency

The Electronic Flow Control, or EFC, is an EXAIR Optimization product to reduce air consumption in your facility.  Saving this electricity that is used to make compressed air will save you money and will help you to “Go Green”.  The EFC has 8 different modes that uses a timing sequence with a Photoelectric Sensor to turn on/off a solenoid valve.  In this video, I will go through each mode to demonstrate how the Electronic Flow Control will perform.

John Ball
Application Engineer

Twitter: @EXAIR_jb

Steps to Find Compressed Air Leaks in your Facility

The Second Step to optimize your compressed air system is to Find and fix leaks in your compressed air system. The reason leaks are important to find and fix is because they can account for 20-30% of a compressors total output. A compressed air leak fixing process can save 10-20% of that lost volume.


Unintentional leaks will result in increased maintenance issues and can be found in any part of a compressed air system. Leaks can be found at a poorly sealed fitting, quick disconnects and even right through old or poorly maintained supply piping. Good practice will be to develop an ongoing leak detection program.

The critical steps needed for an effective leak detection program are as follows:

  1. Get a foundation (baseline) for your compressed air use so you have something to compare once you begin eliminating leaks. This will allow you to quantify the savings.
  2. Estimate how much air you are currently losing to air leaks. This can be done by using one of two methods.
    • Load/Unload systems, where T= Time fully loaded and t=Time fully unloaded:
        • Leakage percent = T x 100
          (T + t)
    • Systems with other controls where V=cubic feet, P1 and P2=PSIG, and T=minutes
        • Leakage = V x (P1-P2) x 1.25
          T x 14.7
  3. Know your cost of compressed air so you can provide effectiveness of the leak fixing process.
  4. Find, Document and Fix the leaks. Start by fixing the worst offenders, fix the largest leaks. Document both the leaks found and the leaks fixed which can help illustrate problem areas or repeat offenders, which could indicate other problems within the system.
  5. Compare the baseline to your final results.
  6. Repeat. We know you didn’t want to hear this but it will be necessary to continue an efficient compressed air system in your plant.

EXAIR has a tool to assist you in finding these leaks throughout your facility, the Ultrasonic Leak Detector. Check one of our other Blogs here, to see how it works!

Leak Detector


If you’d like to discuss how to get the most out of your compressed air system – or our products – give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on FacebookTwitter: @EXAIR_JS


Does a 38 Day Simple ROI Sound Good? Use Engineered Compressed Air Blowoff Products!

After getting a baseline measurement of the air consumption in your facility and locating and fixing leaks in your system, it’s time to begin implementing some changes. Step 3 of the 6 Steps to Optimizing Your Compressed Air System covers upgrading your blowoff, cooling, and drying operations using engineered compressed air products.


This step can have the most impact when it comes to your bottom line. The energy costs associated with the generation of compressed air make it one of the most expensive utilities for any industrial environment. Because of this, we need to ensure that the places in your facility that are using compressed air are doing so efficiently.

EXAIR manufactures a variety of products that can help to ensure you’re using your compressed air in the best way possible. What it may seem simple, easy, and cheap to use something like an open-ended pipe or tube for blowoff, the fact of the matter is that the volume of air that these homemade solutions use quickly make them more expensive. Super Air Nozzles have been designed to entrain ambient air along with the supplied compressed air, allowing you to achieve a high force from the output of the nozzle while keeping compressed air usage to a minimum. In addition to saving air, they’ll also provide a significant reduction in overall sound level.

drilled pipe
homemade drilled pipe

Another product that can be used to increase the efficiency of your blowoff processes is the Super Air Knife. Available in lengths ranging from 3”-108” and in a variety of materials, the Super Air Knife is the ideal replacement for inefficient drilled pipes. Again, it may seem cheaper to just drill a few holes in a pipe whenever you need to cover a wide area but the volume of air consumed in addition to the incredibly high sound level will quickly drain your compressor. The Super Air Knife is also designed to entrain ambient air, at a rate of 40:1! Allowing you to take advantage of the free ambient air in addition to the supplied air.

Let’s compare the costs difference between a homemade drilled pipe and EXAIR’s Super Air Knife. The Super Air Knife has a precisely set air gap across the full length of the knife, allowing for an efficient and quiet laminar airstream. When compared to a drilled pipe, the air consumption is dramatically reduced as is the sound level. For example, let’s take an 18” section of drilled pipe, with 1/16” diameter holes spaced out every ½”. At 80 PSIG, each hole consumes 3.8 SCFM. With a total of 37 holes, this equates to a total of 140.6 SCFM.

3.8 SCFM x 37 = 140.6 SCFM

A Super Air Knife, operated at 80 PSIG with .002” stock shim installed will consume a total of 2.9 SCFM per inch of knife. An 18” SAK would then consume just 52.2 SCFM.

2.9 SCFM x 18 = 52.2 SCFM

140.6 SCFM – 52.2 SCFM = 88.4 SCFM saved 

Replacing an 18” drilled pipe with a Super Air Knife represents a total reduction in compressed air consumption of 63%! How much does this equate to in $$$? A reasonable average of cost to generate compressed air is about $0.25/ 1000 SCF. Let’s assume just a 40hr workweek:

88.4 SCFM x 60 mins x $0.25/1000 SCF = $1.33/hr

$1.33 x 40hr workweek = $53.20 USD

$53.20 x 52 weeks/year = $2,766.40 USD in yearly savings

The 2019 list price on a Model 110018 Super Air Knife is $397.00. By replacing the homemade solution with an 18” Super Air Knife, the return on investment is just over 38 working days of an 8-hr shift. If your plant runs multiple shifts, or works on weekends, it pays for itself even quicker.

Not only are these homemade solutions expensive to operate, they’re not safe either. Familiarize yourself with both OSHA 29 CFR 1910.95(a) and 29 CFR 1910.242(b) and you’ll learn just how expensive it can be if you were to be found using these devices during a random OSHA inspection. Make sure you’re utilizing the most expensive utility as efficiently and safely as possible. If you need help with determining which products are best suited for your application, give us a call. Our team of Application Engineers is ready to help!

Tyler Daniel
Application Engineer
Twitter: @EXAIR_TD

Compressed Air Efficiency – How It Benefits Business

It is estimated that typically plants can waste up to 30 percent of their generated compressed air and that cost is substantial.  Considering the average cost to generate compressed air here in the Midwest is .25 cents per 1,000 Standard Cubic Feet, that translates into .075 cents for every .25 cents spent!  Compounded with the fact that energy costs have doubled in the last five years, it couldn’t be a better time to make your air compressor system more efficient.


The following steps will help you save air and in turn save money.

  1. Measure the air consumption to find sources that use a lot of compressed air.

Knowing where you stand with your compressed air demand is important to be able to quantify the savings once you begin to implement a compressed air optimization program. Placing a value upon your compressed air consumption will also allow you to place a value on its costs and the savings you will reap once you start to reduce your consumption. (EXAIR’s Digital Flow Meter)


  1. Find and fix the leaks in your compressed air system.

Not fixing your compressed air system leaks can cause your system pressure to fluctuate and affect your equipment negatively. It may cause you to run a larger compressor than necessary for your compressed air needs and raise your total costs. Or it could cause your cycle and run times to increase which leads to increased maintenance to the entire system. (EXAIR’s Ultrasonic Leak Detector)

uhd kk

  1. Upgrade your blow off, cooling and drying operations using engineered compressed air products.

Your ordinary nozzle with a through hole and a cross drilled hole can be an easy choice based upon price, but if you do not consider the operating cost you do not really know how much it is costing you. An Engineered Air Nozzle will pay for itself and lower operating costs quickly. Engineered Air Nozzles are the future of compressed air efficiency and are made to replace ordinary nozzles, homemade nozzles and open line blow offs. Engineered Nozzles reduce air consumption and noise levels; ordinary nozzles cannot compete. Engineered Nozzles maintain safety features and can qualify for an energy savings rebate from a local utility; ordinary nozzles fall short. Open blow off or homemade blow off applications typically violate OSHA safety standards; Engineered Nozzles do not.  (EXAIR’s Air Nozzles)

EXAIR Nozzles
  1. Turn off the compressed air when it is not in use.

Automated solutions add solenoid valves and run them from your machine controls. If the machine is off, or the conveyor has stopped – close the solenoid valve and save the air.  And blow off applications can benefit from any space in between parts by turning the air off during the gaps with the aid of a sensor and solenoid. (EXAIR’s automated  Electronic Flow Control)


  1. Use intermediate storage of compressed air near the point of use.

Also known as secondary receivers, intermediate air storage is especially effective when a system has shifting demands or large volume use in a specific area. Intermediate storage is the buffer between a large demand event and the output of your compressor. The buffer created by intermediate storage (secondary receiver) prevents pressure fluctuations which may impact other end use operations and affect your end product quality. (EXAIR’s Receiver Tanks)

  1. Control the air pressure at the point of use to minimize air consumption.

This is a very simple and easy process, all it requires is a pressure regulator. Installing a pressure regulator at all of your point of use applications will allow you to lower the pressure of these applications to the lowest pressure possible for success. Lowering the pressure of the application also lowers the air consumption. And it naturally follows that lower air consumption equals energy savings. (EXAIR’s Pressure Regulators)

By increasing your awareness of the health of your air compressor system and implementing a PM program you can significantly reduce your costs from wasted energy and avoid costly down time from an out of service air compressor.

If you would like to discuss improving your compressed air efficiency or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS



Finding & Fixing Leaks: The Benefits of Creating a Leak Detection Program

Leaks in a compressed air system can be a substantial source of wasted energy. A facility that hasn’t maintained their compressed air system will likely have a leak rate around 20-30% of the total air production.  But with a leak detection plan you can reduce air leaks to less than 10% of the compressor output.


Along with the energy waste, leaks will contribute to higher operating cost.  Leaks cause a drop in system pressure, which can make air tools operate poorly, harming production cost and time. In addition, by forcing the equipment to cycle more often, leaks shorten the life of almost all system equipment, including the compressor. Increased running time can also lead to added maintenance and increased downtime. Finally, leaks can lead to adding unnecessary compressor volume.

Since air leaks are almost impossible to see, other methods must be used to locate them. The best way to detect leaks is to use an ultrasonic acoustic detector, Like EXAIR Ultrasonic Leak Detector (ULD). This unit can recognize the high frequency hissing sounds associated with air leaks. A person using the ULD only needs to point it in the direction of the suspected leak. When a leak is present, an audible tone can be heard with the use of the head phones, and the LED display will light.  Testing various unions, pipes, valves and fittings of a complete system can be done quickly and effectively at distances up to 20’ away!

uhd kk

uhd e

The advantages of ultrasonic leak detection include flexibility, speed, ease of use, the ability to test the system while machines are running, and the ability to find a wide variety of leaks. They involve very little training, operators often become competent after 10 minutes of training.

Due to the nature of ultrasound, it is directional in transmission. For this reason, the signal is loudest at its source. By scanning around a test area, it is possible to very quickly target in on a leak site and pin point its exact location. For this reason, ultrasonic leak detection is not only fast, it is also very accurate.

An active leak prevention program will embrace the following components: identification, tracking, repair, verification, and employee participation. All facilities with a compressed air system should establish an aggressive leak reduction program. A team involving managerial representatives from production should be formed to carry out this program.

A leak prevention program should be part of an overall program intended to improve the performance of compressed air systems. Once the leaks are found and repaired, the system should be started from the beginning until all leaks are addressed.

A good compressed air system leak repair program is very important in maintaining the efficiency, reliability, stability and cost effectiveness of any compressed air system.


“First a Plant Engineer or Maintenance Supervisor must realize that leak repair is a journey, not a destination. An ongoing compressed air leak monitoring and repair program should be in place in any plant that has a compressed air system.” Explains Paul Shaw, a General Manager for Scales Industrial Technologies’ Air Compressor Division, and an Advanced CAC Instructor, “Leak identification and remediation with a high quality repair can lead to substantial energy savings that typically has a very rapid payback, usually a year or less. In the hundreds of leak audits and repairs that we have done we’ve found that the quality of the repair is critical to ensuring the customer receive the most value for his investment and that the leak remains repaired for as long as possible. From there, constantly monitoring for compressed air leaks and repairing them as they occur can help the plant continue to reap the energy benefits.”

Above is an excerpt from “Best Practices for Compressed Air Systems”, Appendix 4.E.1.

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

6 Steps to Optimizing Your Compressed Air System

If you’re a follower of the EXAIR Blog, you’re probably well aware that compressed air is the most expensive utility in an industrial environment. The average cost to generate 1000 Standard Cubic Feet of compressed air is $0.25. If you’re familiar with how much air you use on a daily basis, you’ll understand just how quickly that adds up.

To make matters worse, many compressed air systems waste significant amounts of compressed air just through leaks. According to the Compressed Air Challenge, a typical plant that has not been well maintained will likely have a leak rate of approximately 20%!! Good luck explaining to your finance department that you’re carelessly wasting 20% of the most expensive utility.


6 Steps from Catalog

The best way to save energy associated with the costs of generating compressed air is pretty straightforward and simple: TURN IT OFF! Placing valves throughout your distribution system allows you to isolate areas of the facility that may not need a supply of compressed air continuously.

Even a well-maintained system is going to have a leakage rate around 10%, it’s darn near impossible to absolutely eliminate ALL leaks. By having a valve that allows you to shut off the compressed air supply to isolated areas, you’re able to cut down on the potential places for leaks to occur.

You’re likely not running each and every machine continuously all day long, if that’s the case why not shut off the air supply to those that aren’t running? When operators go to lunch or take a break, have them turn off the valves to prevent any wasted air. The fact of the matter is that taking this one simple step can truly represent significant savings when done diligently.

You wouldn’t leave your house with all the lights and TV on, so why leave your compressed air system running when it’s not in use? Even if everyone’s left for the day, leaks in the system will cause the compressor to keep running to maintain system pressure.

Taking things one step further, EXAIR’s Electronic Flow Control (EFC) utilizes a solenoid controlled by photoelectric sensor that has the ability to shut off the compressed air when no part is present. If you’re blowing off parts that are traveling along a conveyor with space in between them, there’s no need to continuously blow air in between those parts. The EFC is able to be programmed to truly maximize your compressed air savings. The EFC is available in a wide range of different capacities, with models from 40-350 SCFM available from stock and systems controlling two solenoid valves for larger flowrates available as well.


It’s no different than turning off your house lights when you leave for work each day. Don’t get caught thinking compressed air is inexpensive “because air is free”. The costs to generate compressed air are no joke. Let’s all do our part to reduce energy consumption by shutting off compressed air when it isn’t necessary!

Tyler Daniel
Application Engineer
Twitter: @EXAIR_TD

Compressed Air Flowmeter Overview and Options


EXAIR Digital Flowmeters can be an important part of your compressed air system for optimization.  Flow is a measurement that is directly related to your cost for operation; and, it can help in determining efficiency, leak rates and the overall “health” of your pneumatic system.  Th Digital Flowmeters are easy-to-read, easy-to-install, and easy-to-record devices.  You will not have to disrupt your piping system with cutting, welding, or dismantling for installation.  In this blog, I will share some product information and options that work with the EXAIR Digital Flowmeters.

The EXAIR Digital Flowmeter is a thermal dispersion device that can accurately measure compressed air flows.  They use two sensing probes for comparative analysis.  One probe is a temperature sensing probe, and the other is a flow-sensing probe. By comparing these, the Digital Flowmeter can measure accurately even in low flow regions.  Also, they do not need to be re calibrated.  They are CE and RoHS certified., and they do not have any moving part to wear.  The EXAIR Digital Flowmeters are a cost-effective, simple way to measure compressed air flows.

To get started, I will go over the design of the Digital Flowmeter.  The two sensing probes as discussed above will have to be installed in the air stream.  This is done with the Drill Guide Kit.  This kit includes a guide to properly locate the two holes in the pipe and a drill bit for the correct clearance.  The Digital Flowmeter uses a clamp design to mount onto the pipe and to seal the area around the probes.  Once it is powered, the unit is ready to measure the air flow inside the pipe with a large LED display.  The display can be customized to show flow readings in three different units; SCFM, M3/hr or M3/min.  It can also display Daily Usage and Cumulative Usage. Overall, it only takes a few minutes to install and start using.

EXAIR stocks a large volume of Digital Flowmeters to ship same day.  We also offer a 30-day unconditional guarantee for domestic and Canadian customers to try them out.  The ranges that we stock are for pipe diameters from ½” NPT to 4” NPT Schedule 40 black pipe.  For non-stocked items, EXAIR can go as large as 8” NPT Schedule 40 black pipe.  We can also get Digital Flowmeters to use with copper pipes from 3/4” to 4” sizes, and to use with aluminum pipes with the O.D. ranging from 40mm to 101mm.  If you use other types of piping for your compressed air system, you can give us the material, outside diameter/inside diameter, and the wall thickness.  We may still be able to get a Digital Flowmeter for you to use.

What sets our Digital Flowmeters apart from other types are the features and benefits.  All of the units come standard with a 4 – 20mA analog output.  We can also offer this signal as a serial output per your request for RS-485 or Ethernet connections.  The maximum pressure for the units is 200 PSIG (13.8 Bar), but we have a high pressure option to go as high as 600 PSIG (41 Bar).  If your Digital Flowmeter needs better protection for splash resistance, we can also offer units with a NEMA 4 (IP66) rating.

What more can we offer with the EXAIR Digital Flowmeter?  Options.  Options upgrade the flow meters to better suit your application.  Here is a list below.

USB Data Logger: This option allows for a record of the flow information.  With a software download, you can setup the USB Data Logger to record the flows from once a second (roughly 9 hours of storage) to every 12 hours.  Once the unit has been configured, you just plug in the unit into the Digital Flowmeter and let it record the data points.  You can then upload the information into the software program to review.  It also has the ability to transfer the information into an Excel program to do further analysis.

Summing Remote:  With compressed air piping running along the ceiling and walls, it may be difficult to see the Digital Flowmeter.  The Summing Remote has a 50-foot (15 meter) cable to bring the flow measurements from the Digital Flowmeter for viewing.  The Summing Remote is powered by the Digital Flowmeter, and it can also show the daily and cumulative readings.  They can be positioned at eye level near stations, inside managers’ rooms, or around large equipment for monitoring.

Hot Tap:  This option is for Digital Flowmeters that are 2” and larger for steel and copper pipes.  It gives a quick and easy way to attach the Digital Flowmeter to the pipe without shutting down the compressed air line.  If you have a 24-hour operation or a critical process that needs to run, this option would be a great way to install the EXAIR Digital Flowmeter without disturbing the system.

Pressure Sensing:  If you would like to know the compressed air flow and the air pressure on the same unit, this option is able to do this.  They are available with the Digital Flowmeters for steel and copper pipes that are 2” and larger, and for the aluminum piping that are 50mm and larger.  This option can display the pressure units in either PSI or Bar right on the LED display.

Block-Off Rings:  If you want to relocate your Digital Flowmeter, the Block-Off Rings will be able to cover the openings.  They seal around the area when the Digital Flowmeter is removed from the pipe.  They are reusable; so, they can be removed if you want to remount the Digital Flowmeter in the same spot.  Or if you want to use one flow meter in different locations, the Block-Off Rings allow you do this.

Wireless Capability:  Our latest Digital Flowmeter now has wireless capabilities.  They use a Zigbee® communications to pick up flow readings from different flow meters without running communication wires.  The Gateway is a system that can detect over 100 Digital Flowmeters located throughout your facility.  From the Gateway, the information is transferred through a LAN to your computer.  You can record and analyze the flow information from each meter on the network with our EXAIR® Logger Software.  You can set limits to send warning when your compressed air system is using too much or too little of compressed air.  This technology makes it very easy for measuring your compressed air system in different areas without having to be there.

When you need to analyze your pneumatic components, flow is an important point in diagnosing the overall “health” of your compressed air system.  The EXAIR Digital Flowmeter can give you that important data point.  With this overview, you may have additional questions and that is great.  An Application Engineer at EXAIR is here to help.  We can support you in determining the product and options that will work best for you.

John Ball
Application Engineer

Twitter: @EXAIR_jb