KPIs & Your Air Compressor

We have blogged about the many types of air compressors, ways to maintain your compressed air system, and how to increase compressed air efficiency by utilizing engineering compressed air products. All of these topics spawn from our knowledge and understanding of what it takes to operate and effectively service the products that we design and sell. When it comes to our products we know exactly what we need to convey how good they are, Key Performance Indicators if you will. To go along with those, I thought it would be good to outline some Key Performance Indicators for the air compressor within a system.

A Rental Tow Behind Air Compressor

So what performance values are critical for an air compressor? Well, power and efficiency are two main KPIs that I would be concerned with. This all connects to the bottom dollar of the cost to operate. So let’s add some more levels in there and get to the list I would list the KPIs as:

Pressure Loss
Leakage Rate
Dew Point
SCFM Output
Cost/Production Unit Output

These are not necessarily in a top to bottom list of priorities, They are however some that can be easy to monitor and will ultimately lead you to understand the current state of your compressor and the air you are supplying to your facility. Now let’s break these down further.

Pressure Loss – This phenomenon can be prevalent in aging air systems or systems that have been rapidly expanded over the years causing higher demand than the original design of the system permits. Think of when a new housing development opens on a two-lane country road and adds another thousand cars to the road in that area. Rather than a 4 way stop you generally start to see routes expand and intersections improve in order to supply the new demand. Losing pressure throughout the system can be caused by too much demand on a section from new equipment or even failure of old equipment that results in artificial load. Understanding where the pressure loss is occurring or when helps to troubleshoot.

Leakage Rate – Leaks can often account for up to 30% of a system’s capacity/demand. This is not only costly, it also ties to the pressure loss variable we discussed previously. Leakage is a constant battle and something that needs to be checked for every so often on systems that are established. This again results in artificial demand on the system and steals supply from other processes.

Dew Point – The amount of moisture within the compressed air system and the temperature at which it will condense at is a critical point to understand and affects the output quality of the compressor. Moisture can cause lots of quality issues and create maintenance nightmares for machinery if not kept in check. A low dew point helps to keep the compressor operating at an efficient level as the moisture content is low. Should you be located in a very high-humidity climate, then post-compressor equipment like refrigerant dryers can help to reduce this and keep your system operating at an optimal level.

SCFM Output – This can easily be measured with a Digital Flowmeter and is very easily one of the most useful data points to monitor your compressor’s output as well as baseline and improve your supply side. Understanding if your air compressor is operating at a higher percentage of output will help to determine when system expansion is needed and when demand side issues need to be addressed, and also help you to determine the ROI on equipment that utilizes compressed air.

Cost/Production Unit Output – Lastly, understanding the cost of using your compressed air and how that correlates to the output of the facility can help to see just how important a small leak is. It gives insight into the importance of using the compressed air that is generated efficiently and keeps the compressor operating at peak performance rather than putting off maintenance or overloading an undersized system.

If you would like to discuss any of these KPIs for your air compressor or to see how you can increase performance within your system, contact an Application Engineer today.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Marketing Metrics

Step 4 “6 Steps to Optimizing your Compressed Air”

Turn it off! When you pull your car in the garage what do you do? I believe the answer would be you turn it off. When you finish washing your hands what do you do? I believe that you turn off the water. When your finish baking your dinner, what do you do? I believe you turn off the oven. These all seem like natural habits that we learned through life but seemingly we tend to overlook, “turning it off” when using compressed air. One of the biggest savings you can find when working with your compressed air systems would be “Turning It Off” when not in use.

EXAIR has both manual and electronic driven options for turning your compressed air off while it is not needed. You can use manual (ball) valves to easily turn your compressed air on or off. Manual valves can be used at the point of use for anyone to simply turn the valve stopping the compressed air when it is not needed. A ball valve is a shut-off valve that controls the flow of a liquid or gas by means of a rotary ball having a bore. Rotating the ball a quarter turn (90 degrees) around its axis, the medium can flow through or is blocked. They are characterized by a long service life and provide a reliable closure over the life span, even when the valve is not in use for a long time.EXAIR has valves available from 1/4 NPT up to 1 NPT fittings.

Some systems may require turning your compressed air on/off on a more frequent basis so using an electronic form of shut off might be a preferred method. EXAIR has an Electronic Flow Control (EFC) that can be programmed to accommodate gaps of time ensuring the most efficient use of air. Our EFC is a user friendly, flow control for compressed air that is designed to minimize compressed air use on blow off, drying, cooling, conveying and statius elimination operations. The EFC combines a photoelectric sensor with a timing control that limits compressed air use by turning it off when no part is present. The timing control permits easy tuning to the application requirements while providing flexibility in sensing distance. The EFC also has eight programmable on and off modes.

EXAIR can help your company “go green” saving you money through efficient use of your compressed air. If you have questions or need help determining which of our products will help, please contact one of our Application Engineers as we are happy to help.

Eric Kuhnash
Application Engineer
E-mail: EricKuhnash@exair.com
Twitter: Twitter: @EXAIR_EK

Compressed Air Efficiency! “Step One”

I’m currently in the closing process of selling my first home. This is the house I got married in, brought my first child home to. Needless to say there has been a lot going on to get the place up to selling shape, one of those things was getting the HVAC system checked out to verify its running correctly and efficiently! (Spoiler, mine was running very well thank goodness)

With compressed air being considered a fourth utility its important we check the efficiency of the system and fix issues and install upgrades where we can! EXAIR has six simple steps to optimize your compressed air system. Following these steps will help you to cut electrical costs, reduce overhead, and improve your bottom line. In this blog, I will cover the first step – Measure the air consumption to find sources that use a lot of compressed air.

EXAIR Six Steps To Optimizing Your Compressed Air System

Data is important to have when diagnosing wasteful and problematic areas within your compressed air system. To measure air consumption, flow meters are used to find the volume or mass of compressed air per unit of time. Flow rates are very useful data points to find problems like leaks, over-use in blow-offs, waste calculations, and comparison analysis.

The first step to optimizing compressed air systems within an industrial facility is to get a known baseline. To do so, utilizing a digital flowmeter is an ideal solution that will easily install onto a hard pipe that will give live readouts of the compressed air usage for the line it is installed on.  There is also an additional feature that we offer on the Digital Flowmeters that can help further the understanding of the compressed air demands within a facility.

The Pressure Sensing Digital Flowmeters are available from 2″ Sched. 40 Iron Pipe up to 8″ Sched. 40 Iron Pipe.  As well as 2″ to 4″ Copper pipe.  These will read out and with the additional Data Logger or Wireless Capability options record the information. When coupled with the wireless capability an alarm can be set for pressure drops that give live updates on the system as well as permits data review to see system trends throughout the day.

Generating a pressure and consumption profile of a system can help to pinpoint energy wasters such as timer-based drains that are dumping every hour versus level based drains that only open when needed. A scenario similar to this was the cause of an entire production line shut down nearly every day of the week for a local facility until they installed flowmeters and were able to narrow the demand location down to a filter bag house with a faulty control for the cleaning cycle.

If you would like to discuss the best digital flowmeter for your system and to better understand the benefits of pressure sensing, please contact us.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

The Sixth Sense: Pressure Sensing Digital Flowmeters

Pressure profiles and flowrates of a compressed air system are essential parts in understanding and maintaining an industrial compressed air system. Understanding what the pressure is coming out of the compressor, what it is in your header system, and then down into the drops of your machines and points of use are all beneficial to building an efficient compressed air system. Of course, this will take some monitoring.

In a perfect system, the compressor outlet pressure and the point of use line pressure will be the same. Due to factors such as friction loss, unregulated demands (leaks), and inefficient pipe sizing, it is difficult to produce in a real life scenario. This results in a pressure drop across the compressed air system, a decline in pressure from the compressor outlet to the end use devices. Understanding the full pressure and flow layout of a system can be used to zero in on artificial demand on the system which is a result of a leaks or inefficient use of compressed air.

The Pressure Sensing Digital Flowmeters provide the ability to see both the flow on a pipe as well as the operating pressure. When coupled with other items such as our Wireless Communication network they can easily be setup to generate alerts to operators as well. This would look like a message stating that operating pressure has dropped and that would result in the operator halting production to determine the cause. While a production halt is less than desirable, a crashed machine or loss of clamping a part due to pressure drop can be worse.

Pressure Sensing Port on the Pressure Sensing Digital Flowmeter gives the added benefit of tracking more information.

By using the Pressure Sensing Digital Flowmeters you will be able to build a pressure profile throughout your system. This can all build back into an efficient compressed air system by tying directly into the information gathered for the overall system.

For instance, If a compressor set point is 90 psig, and at the point of use you are seeing 70 psig, you have a 20 psig drop in piping, fittings and/or artificial demand. If the operator needs 80 psig to maintain their process then that means someone will want to bump the compressor set point to 100 psig to compensate. First off, that pressure drop should never be present in a system as it is excessive. Second, if this is a positive displacement compressor then for every 2 psig added, the compressor itself will increase by 1% of energy demand from the drives.

If you would like to dig into your system and start building a pressure/flow profile to start off your path to an optimized system, please contact an Application Engineer.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF