Proper Compressed Air Supply Plumbing Equals Success

EXAIR manufactures and stocks Super Air Knives in lengths ranging from 3”-108”. They’re designed to dramatically reduce compressed air usage when compared to similar blowoffs while still maximizing both force and flow. With an air entrainment ratio of 40:1, it’s the ideal solution for a variety of applications that necessitate a wide, laminar sheet of high velocity airflow.

I recently worked with a customer who makes wooden pallets. They were using a Model 110048 48” Super Air Knife to remove sawdust from the pallets prior to stacking them. When the grooves are cut into the pallet to accommodate the forks from a forklift or pallet-jack, there’s a good amount of sawdust that remains on the pallet. They would prefer to not have sawdust all over the finished pallets that they send to customers, so they looked towards a Super Air Knife to provide a curtain of air capable of removing that sawdust just prior to stacking them.

They purchased the Model 110048, but after installing it they didn’t get the level of force they had been hoping for. After some initial discussions, we identified that the issue lied with the plumbing of the air supplied to the knife. A 48” Super Air Knife will need to be fed with compressed air to (3) of the ¼ NPT air inlets. This ensures that an adequate volume of air is fed to the full length of the knife, keeping a consistent airflow.

Not only had they been plumbing compressed air to just (1) air inlet, but they were also using a restrictive quick-disconnect fitting. The I.D. of a quick connect fitting restricts the overall volume of air that can be passed through it. Length of the pipe or hose is also critical as the diameter of the pipe will need to be larger for longer runs or greater volumes. Accompanying any Super Air Knife is our Installation & Maintenance Guide which outlines the necessary requirements for each available length that we have available as well as how many air inlets need to be supplied with compressed air.

SAK pipe sizing

To confirm that air supply was the issue, they installed a pressure gauge directly at the air inlet to the knife. Line pressure was around 90 PSIG, but when they opened the valve and supplied air to the knife the pressure gauge dropped all the way to 35 PSIG. We’ve talked about pressure drop before here on the EXAIR Blog, the only way to confirm this is to take a pressure reading directly at the air inlet.

They removed the quick disconnect fitting, increased to a 1/2″ supply hose in place of 1/4″, and plumbed compressed air to each end and the center air inlet. On all Super Air Knives, compressed air inlets are available on either end as well as on the bottom. After fixing their plumbing, they noticed a dramatic increase in both force and flow and the pressure directly at the air inlet increased to 85 PSIG. The sawdust was easily blown off of the pallets and the customer was pleased that their pallets were free of sawdust.

sak pallet

At EXAIR, we stand by our products with the Unconditional 30 Day Guarantee. If you’ve just purchased a new product and aren’t seeing the results that you were hoping for give us a call. Our highly-trained team of Application Engineers is ready and standing by to investigate the application and provide support to help make sure you’re getting the most out of our products. Most of the times the solution is simple, but we won’t be satisfied until we find a resolution!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

EXAIR’s Super Air Knife Removes Moisture From Plastic Bottles Prior to Labeling

EXAIR’s Super Air Knife is THE best solution for compressed air blowoff operations that require a wide sheet of compressed air. We’ve been manufacturing Air Knives for over 35 years, with the Super Air Knife making its first appearance back in 1997. Since then, the Super Air Knife has undergone a few enhancements over the years as we’re constantly trying to not only introduce new products but also improve on the ones we have. We’ve added new materials, longer single piece knives, as well as additional accessories. But, by and large, the basic design has remained the same. As the saying goes: “If it ain’t broke, don’t fix it!”.

The Super Air Knife utilizes a source of compressed air to create a laminar sheet of high velocity air. This supplied compressed air mixes with ambient air that is entrained into the primary airstream. The Super Air Knife entrains ambient air at a rate of 40:1, making it VERY effective in a variety of drying, cleaning, and cooling applications. Available in lengths ranging from 3”-108” and in a variety of different materials of construction, there’s a Super Air Knife available for just about any application.

Any time you have product moving along a conveyor that needs to be cleaned, dried, or cooled off, a Super Air Knife is the ideal fit. I recently worked with our Argentinian Distributor on an application involving drying off plastic bottles just prior to applying a label to the outside. After the bottles are molded, they go through a washing operation to remove contaminants from the inside and outside of the bottles before they’re filled. After filling, a label must be applied to the outside of the bottle. Before installation of the Super Air Knives, they were allowing the bottles to air dry. As they moved along the conveyor, most of the residual water did come off and wasn’t causing any issues.

SAK and Mounting System

They were looking to increase production rates so that they could keep up with demand, however when they increased the speed of the conveyor there was still a good amount of residual water remaining on the bottles. This prevents the label from adhering properly to the outside of the bottle. Not only did this result in an added step to inspect the bottles, but those that weren’t labeled properly had to have the label removed and cleaned off before a new one could be put on. This actually ended up being less productive than just running the conveyor at a slower speed.

They came across the EXAIR Super Air Knife and decided to try (2) 110036 aluminum Super Air Knives to remove excess moisture just prior to labeling. The plant handles a wide variety of different sized bottles, so they also utilized the Universal Mounting System so that they could easily adjust the positioning of the knife based on the job. With the Super Air Knives in place, they were able to effectively run the operation nearly 20% faster without any problems.

With the quiet and efficient Super Air Knives in place, they were able to increase production rates in order to fulfill their orders on time. If there’s an application in your facility that could necessitate the use of an EXAIR Super Air Knife, give us a call. With 16 different lengths available from stock in 4 different materials, same day shipping with orders placed by 3:00 ET, AND our unconditional 30 day guarantee, there’s no excuse not to give one a try!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Many Air Knife Materials and Shim Options to Suit Your Application

The EXAIR Super Air Knives are used in many applications ranging from part drying, to web cleaning, to conveyor blowoff, and many other uses. For most processes, the aluminum models provide the performance required and withstand the environmental conditions present.

Ambient temperature limits for the aluminum models is 180°F (82°C). EXAIR also offers the air knives in types 303 and 316 Stainless Steel, which increase the temperature limit to 800°F (427°C) and provides a great degree of corrosion resistance. For the harshest, most corrosive environments, an air knife constructed of Polyvinylidene Fluoride (PVDF) with a temperature limit to 275°F (135°C) is available.

Super Air Knives
Aluminum, Stainless Steel and PVDF Super Air Knives

But what can we do about those applications where the increased corrosion resistance isn’t needed and the temperatures do not approach anywhere near to 800°F (427°C)?

The solution to this situation is an aluminum air knife with a custom stainless steel shim. The aluminum material is rated to 400°F (204°C) and the shim is good to 800°F (427°C) so this knife can be used in those hotter environments up to 400°F (204°C). This option helps to keep the cost of the knife low, by utilizing the lower cost aluminum for the body and cap.

The table below details the materials of construction options for the Super Air Knife – a wide array of material offerings to suit even the hottest, harshest conditions.

Air Knife Temperature Table

We recommend consulting with an Application Engineer to review the application, process, and environmental conditions, and we can present best options.

And don’t forget, the shims can be further customized for special blowoff requirements. See the blog that my colleague, Russ Bowman, posted here.

If you have questions about Super Air Knives or any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Air Entrainment & EXAIR’s Intelligent Compressed Air Products

Air entrainment is a term that we bring up quite often here at EXAIR. It’s this concept that allows many of our products to dramatically reduce compressed air consumption. The energy costs associated with producing compressed air make it an expensive utility for manufacturers. Utilizing engineered compressed air products that will entrain ambient air from the environment allow you to reduce the compressed air consumption without sacrificing force or flow.

Entrainment
EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

Products such as the Super Air Knife, Super Air Nozzle, Air Amplifier, and Super Air Wipe all take advantage of “free” air that is entrained into the primary supplied airstream. This air entrainment occurs due to what is known as the Coanda effect. Named after renowned Romanian physicist, Henri Coanda, the Coanda effect is used in the design of airplane wings to produce lift. As air comes across the convex surface on the top, it slows down creating a higher pressure on the underside of the wing. This creates lift and is what allows an airplane to fly.

nozzle_anim_twit800x320
EXAIR Super Air Nozzle entrainment

This is also the same principle which is allowing us to entrain ambient air. As the compressed air is ejected through a small orifice, a low-pressure area is created that draws in additional air. Our products are engineered to maximize this entrained air, creating greater force and flow without additional compressed air. Super Air Amplifiers and Super Air Nozzles are capable of up to a 25:1 air entrainment ratio, with just 1 part being the supplied air and up to 25 times entrained air for free!! The greatest air entrainment is achieved with the Super Air Knife at an incredible ratio of 40:1!

This air entrainment principle allows you to utilize any of these products efficiently for a wide variety of cooling, drying, cleaning, or general blowoff applications. In addition to reducing your compressed air consumption, replacing inefficient devices with engineered products will also dramatically lower your sound level in the plant. Sound level in some applications can even be reduced down to a point that would eliminate the need for hearing protection with the OSHA maximum allowable exposure limits set at 90 dBA for an 8-hour shift.

If you have inefficient blowoff devices in your facility, give us a call. An Application Engineer will be happy to help you select a product that will “quietly” reduce your compressed air consumption!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Henri Coanda: June 7, 1886 – November 25, 1972

Henri Coanda was a Romanian aeronautical engineer best known for his work on the fluid dynamic principle with his namesake, the Coanda effect. Before this, Henri patented what he labeled as a jet engine.

Jet Engine 1
Jet Engine

Henri’s patent (French patent No. 416,54, dated October 22, 1910) gives more information into how he envisioned the motor working. When air entered the front, it passed through different cavities that caused the air stream to first contract and then expand. In Henri’s opinion this contraction and expansion converted the air’s kinetic energy into potential energy.  The air ultimately was channeled to a diffuser where it was discharged.

Henri stated that the efficiency of this engine could be improved by heating the air in the cavities, Henri’s logic was that this would increase the pressure of the air passing through.

What is obviously lacking in the patent (including identical ones taken out in England and the United States) is any mention of injecting fuel, which in a true jet engine would combust with the incoming air. Judging only by Henri’s patent, it was little more than a large ducted fan and it could not have flown.  Throughout Henri’s career he changed his story many times on whether this plane actually flew or not.

Not to cast too much shade on Henri’s accomplishments he did discover the Coanda effect.  The Coanda effect states that a fluid will adhere to the surface of a curved shape that it is flowing over.  One might think that a stream of fluid would continue in a straight line as it flows over a surface, however the opposite is true.  A moving stream of fluid will follow the curvature of the surface it is flowing over and not continue in a straight line. This effect is what causes an airplane wing to produce lift, and enhance lift when the ailerons are extended while at lower air speeds such as occurs during takeoff and landing.

plane-1043635_1920
Ailerons positioned for cruising speed

EXAIR uses the Coanda effect to offer you highly engineered, intelligent and very efficient compressed air products.  Our designs take a small amount of compressed air and actually entrain the surrounding ambient air with the high velocity exiting compressed air stream to amplify the volume of air hitting a surface.

nozzle_anim_twit800x320
Surrounding Air Captured (Entrained) In Exiting Compressed Air Stream
How Air Knife Works
1). Compressed Air Inlet, 2). Compressed Air Exiting EXAIR Super Air Knife 3). Surrounding Air Being Entrained With Exiting Compressed Air Stream
Super Air Amplifier
EXAIR Super Air Amplifier Entraiment

When you are looking for expert advice on safe, quiet and efficient point of use compressed air products give us a call.   We would enjoy hearing from you.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Compressed Air Vs. Blower Air Knife & Other Alternatives

An often debated subject is whether it makes more sense to use a compressed air powered Air Knife or a blower powered Air Knife.  Initially, one might think that the blower option might be a more economical solution due to its slightly lower electrical consumption when compared to an air compressor.  However, a blower powered Air Knife is an expensive capital expenditure that requires frequent downtime, costly maintenance of filters, belts, bearings and electricity!  They also take up a lot of space and can produce sound levels that exceed OSHA noise level requirements.  EXAIR’s Super Air Knife even when operated at 80 PSIG (5.5 BAR), is surprisingly quiet at 69 dBA!

OSHA Chart

Another drawback for the blower powered Air Knives is the air volume and velocity can be difficult to control since these are adjusted mechanically.

Some other important maintenance considerations are:

  • Filters must be replaced every 1 – 3 months.
  • Belts must be replaced every 3 – 6 months.
  • Blower bearings wear out quickly due to the high rpm requirements.
  • The Seals wear and can allow dirt and moisture to enter, couple that with high temperature environments and the bearing life will be reduced.
  • Blowers typically add heat to the air flow, making it unsuitable for cooling applications.

In contrast the award winning and highly efficient EXAIR Super Air Knife represents our latest generation of innovation that dramatically reduces compressed air usage and noise, with no moving parts!

The EXAIR Super Air Knife is a great way to clean, dry or cool parts because they deliver a uniform sheet of laminar air flow across it’s entire length with force that can range from a gentle breeze to extreme hard-fitting force!

EXAIR Super Air Knives highly engineered design entrains ambient air at a ratio of 40:1.  This simply means that for every (1) part of compressed air supplied (40) parts of ambient air are pulled into the compressed air stream exiting the nozzle.

How Air Knife Works

1). Compressed air flows into the plenum of the Super Air Knife.  The flow is directed to a precision slotted orifice.

2). As the air-flow exits the air gap it follows a flat surface that directs the air flow in a perfectly straight line.  This creates a uniform sheet of air across the entire length of the Super Air Knife.

3).  Velocity loss is minimized and force is maximized as the room air is entrained into the primary air-stream at a 40:1 ratio.  This all results in a well defined sheet of laminar air-flow with hard hitting force.

Advantages of the Super Air Knife

  • Very Quiet, typically 69 dBA for most applications
  • Minimal Compressed air consumption
  • 40:1 air amplification
  • Uniform air flow across the entire length
  • Force and flow are variable
  • No moving parts – therefore maintenance free
  • Easy mounting – compressed air inlets are conveniently located on each end and the bottom
  • Compact design, rugged design and very easy to install
  • Recessed hardware
  • Stock lengths up to 108″ in Aluminum (max temperature of 180°F/82°C), 303SS or 316SS (max temperature 800°F/427°C)
  • PVDF is available up to 54″ long for superior corrosion resistance (max temperature 275°F/135°C)

EXAIR’s Super Air Knife is also a great replacement for other commonly used, but highly inefficient and noisy compressed air operated devices.

As an example, two commonly used blow-offs are the drilled pipe and flat air nozzles installed into a pipe.  EXAIR performed a head to head test employing the EXAIR Super Air Knife, Blower Powered Air Knife, Drilled Pipe & Plastic Flat Nozzles mounted in a pipe.

Below are the results of that test from a very common application, blowing water off bottles.  As shown in the First Year Cost Column it becomes clear that the true cost of ownership needs to be considered.  Many plants are surprised at how efficient the EXAIR Super Air Knife is compared to other alternatives.

AirKnifeComparisons

Another important consideration is how effective these other blow-off methods are.  The drilled pipe and flat air nozzles have “dead spots” where the air flow is non existent leaving some of your product wet and/or dirty.

When you are looking for expert advice on safe, quiet and efficient point of use compressed air products give us a call.   We would enjoy hearing from you.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Mounting Options for EXAIR’s Super Air Knife

 

Super Air Knife installed using the Universal Air Knife Mounting system.

The key towards a successful Super Air Knife  application is making sure it’s installed properly. Using the chart on the installation & maintenance guide to ensure your plumbing is properly sized is the first step. This ensures that an adequate volume of compressed air is able to reach the knife, without causing an unnecessary pressure drop.

super air knife pipe size

Once you’ve planned out the distribution of compressed air to the Super Air Knife you must consider how to mount it in your application. Across the bottom of the knife are ¼-20 tapped holes spaced out evenly every 2” along the knife. A 30” Model 110030 will have (15) holes, a 60” 110060 (30), and so on. These holes are tapped through to allow you to mount the knife to best suit the application.

If you’d rather have a more “out of the box” solution, EXAIR offers our Universal Mounting System. It gives you the ability to mount onto a conveyor rail or machine frame and provide precise positioning for all of EXAIR’s Super Air Knives, Standard Air Knives, Full-Flow Air Knives, as well as the Standard and Super Ion Air Knives. Each system comes with (2) 1/2-13 x 5” long bolts, 2’ long stainless steel rod, mounting hardware, angle bracket, and adjustable swivel clamps. Check out the video below for a demonstration of the adjustability you can achieve with the Model 9060 Universal Mounting System.

Another critical factor to consider is the mounting position of the knife. If the material is moving along a conveyor, the knife should be positioned as closely as possible with the airflow oriented against the direction of travel of the material. By doing so, we increase the amount of time that the material is in contact with the airflow. We call this term counter-flow. Maximizing the time in contact with the laminar airflow from the Super Air Knife gives us the best chance at a successful result. Whether we’re talking about cooling, drying, or cleaning, the longer that the material is in contact with the laminar airflow the better the results will be.

air knife counter flow

In this photo, the Super Air Knife is positioned upside down at an angle above a conveyor belt, against the direction of travel. We recommend installing the Super Air Knife in this orientation as it allows the airflow to get closest to the material being blown off. They’ve used their own brackets to allow the knife to be adjusted when blowing residual dust off of a conveyor for a mining application. The dust on the belt would build up over time and was difficult to remove. By installing a Super Air Knife, they’re able to continuously remove the dust from the conveyor belt before it becomes a problem.

If you have an application that would be better served with one of EXAIR’s Super Air Knives, give us a call. An Application Engineer is ready to assist you in selecting the proper material, length, and mounting method.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD