Super Air Amplifiers for Cooling Injection Mold

When working with a cooling application, many customers will immediately look to the Vortex Tube and Cold Gun product lines. While this may be the best solution for some applications with smaller areas to cool, cold air from a Vortex tube based solution is not the best method for large parts or larger areas that exceed a footprint of approximately 2″ x 2″. For larger areas, we have other options for many cooling applications. EXAIR’s Super Air Amplifiers and Super Air Knives are also very effective at reducing the temperature of a part without requiring cold air.

Cooling is a relative concept based on the starting and finishing temperature. What feels “cool” to a human being does not necessarily mean the same thing as “cooling” a part or material. Due to the ability of the Super Air Knives and Super Air Amplifiers to entrain large amounts of ambient temperature air, we can move a lot of air volume across the surface of the target part and quickly lower the temperature.

A simple example I like to use is blowing on a hot cup of coffee just as its been brewed. The temperature of the air coming from your mouth is around 98.6°F, the same as your body temperature. Coffee can be as hot as 185°F when fresh. Due to the temperature differential between your breath and the hot coffee, we’re able to achieve a reasonable amount of cooling just by simply blowing across the surface. Typically, when the target temperature of the part or material needs to be around ambient temperature or higher; the best solution for cooling is going to be either a Super Air Amplifier or Super Air Knife.

Rob's I phone 877

EXAIR 5015 Cold Gun

To illustrate the above concept even more, recently I was working with a customer that needed to cool a silicon injection mold. The mold had two sides and the customer was looking for a method of cooling it down between cycles. The mold cavity surface was approximately 400°F and they wanted to get it down to around 150°F. They were familiar with the EXAIR Cold Gun as they use them across their facility in various secondary or post-molding drilling operations. They had a spare and decided to hook it up and blow the cold air across the face of the mold to see what happens. The volume of air from the Cold Gun was not enough to sufficiently cool the entire mold, so he reached out to EXAIR for assistance.

Based on the dimensions of the mold and understanding the target temperature to be 150°F, we settled on a system of (2) 120224 4” Super Air Amplifier Kits. One was placed above each side of the mold. As soon as the mold opened, they activated the Super Air Amplifiers and were able to pull the surface temperature of the mold down to an acceptable level. Time is money in any manufacturing operation. Companies that produce injection molded parts will look for any way to improve their process. By implementing a procedure to cool the mold more quickly, they are able to boost their productivity gains and become more profitable.

The Super Air Amplifier Kit comes with an Auto-Drain Filter to keep the air clean and dry, a pressure regulator to allow you to dial in the precise level of airflow, and a shim set that allows you to make gross adjustments to the flow. The Super Air Amplifier is available in (5) different sizes with ¾” up to 8” diameter outlets and flow rates from 219 SCFM to 9,000 SCFM 6″ from the outlet. They are capable of achieving an amplification ratio of up to 25:1 from the compressed air supply. The laminar airflow from the unit minimizes wind shear to produce sound levels that are typically three times quieter than other air movers. If you have an application that requires a similar type of cooling, give us a call. We’ll walk you through the process of selecting the most suitable solution.

Tyler Daniel
Application Engineer

E-mail: Tylerdaniel@exair.com
Twitter: @EXAIR_TD

EXAIR Super Air Amplifiers: Saving Air, Saving Lives

 

superairamp(2)

(2) Model 120021 Super Air Amplifiers

 

I have recently had the pleasure of working with a customer developing a method of delivering air to trapped miners during a multi-man mine rescue mission. The federal government mandates that in the event of an explosion, miners must have a safe place to retreat for a minimum of 96 hours. This system will provide them with a supply of air during that period of time. In the initial stages, they had tried using some old venturis left over from a previous project. While this did work, they weren’t as effective or efficient as they needed. Through a little bit of research, they found EXAIR.

Instead of using compressed air as the source, they’re using cryogenic liquid air. That air passes through a series of cold plates and heat exchangers and gets to the Super Air Amplifier at about 70°F. This air is then carried into the chamber, giving the miners a source of clean air.

superairamp(1)

Model 120021 in prototype

 

EXAIR Super Air Amplifiers utilize a patented shim design that allows the unit to entrain ambient air at a rate of up to 25:1 from the compressed air supply. This balanced outlet airflow minimizes wind shear, producing sound levels that are typically three times quieter than other air movers. The Super Air Amplifiers are supplied with a .003” slotted air gap and can be adjusted by replacing the shim with a thicker .006” or .009” shim.

Do you have a cooling or drying application that could benefit from a Super Air Amplifier? Contact an Application Engineer today to find out how EXAIR can help you save compressed air in your application!

Tyler Daniel, Application Engineer
Tylerdaniel@exair.com
@EXAIR_TD

EXAIR Adjustable Air Amplifiers Helps Clear the Smoke

Smoky Foundry

Smoky Foundry

An overseas customer had a problem with their coal blasting furnace. As the workers would open a 1.2 meter by 1.2 meter door to shovel in coal, the foundry would fill with smoke.  This was a hazard and a nuisance for the crew.  They saw articles about how EXAIR Air Amplifiers were used in smaller ovens for exhausting hot flue gases, and they wondered if the EXAIR Air Amplifiers could be used for something much larger.

He sent me an email with some additional details about their furnace system. They had a fan that was mounted in the stack that had a capacity of 50 m^3/min.  This was fed into a filtration collection system to remove the residue byproducts.  The temperature inside the furnace was approximately 450 deg. C.  From this information, I could calculate the required velocity to keep the smoke inside the furnace.

Smoke starting to migrate out of the opening

Smoke starting to migrate out of the opening

In sizing this application, I determined that I could use an equation from Heskestad and Spaulding. This equation was developed to find the minimum velocity required to keep smoke from egressing into corridors during fires.  In this case, we were keeping the smoke from egressing into the foundry.  The formula looks like this:

V = 0.64 * Sqrt(g * H * (T – To)/T)      Equation 1

V – Velocity (m/s)

g – Gravitational acceleration (9.8 m/s^2)

H – Height of Opening (meters)

T – Avg. Fire Temperature (Kelvin)

To – Avg. Space Temperature (Kelvin)

In this equation, we are mainly fighting the forces of the temperature difference from inside the hot furnace area to the outside cooler area.  The outside area was near 40 Deg. C, and this gave me the temperature difference.  In converting these temperatures to the absolute temperature, Kelvin.  I calculated the fire temperature, T, to be 450 Deg. C + 273 = 723 Kelvins; and the space temperature, To, to be 40 Deg. C + 273 = 313 Kelvin.

In placing the given information into Equation 1, the minimum velocity could be found.

V = 0.64 * Sqrt(9.8 m/s^2 * 1.2m * (723K – 313K)/ 723K)

V = 1.65 m/s

 

If the velocity could be maintained at this mark of 1.65 m/s, then the smoke could not egress into the plant.  They had a stack fan that was flowing 50 m^3/min, or 0.83 m^3/sec.  We can determine the velocity that the stack fan was producing by calculating the flow over an area:

V = Q/A      Equation 2

V – Velocity (m/s)

Q – Flow (m^3/sec)

A – Area (m^2)

 

With a door opening of 1.2m by 1.2m, or 1.44m^2, the velocity can be calculated by placing the known values into Equation 2:

V = (0.83 m^3/s) / (1.44m^2)

V = 0.58 m/s

Now we can see why they were getting smoke pluming from the coal furnace into their facility. They required a minimum of 1.65 m/s, and the stack fan was only drawing 0.58 m/s.  If we take the difference, we can determine how much additional velocity will be required to keep the smoke within the furnace: 1.65 m/s – 0.58 m/s = 1.07 m/s.

 

To determine how much air flow would be needed to create a velocity of 1.07 m/s through the door opening, I just had to rearrange Equation 2 to determine the flow, Q.

Q = V * A = 1.07 m/s * 1.44 m^2 = 1.54 m^3/s

To better correlate the flow data, I converted 1.54 m^3/s to 92.4 m^3/min of air flow.

EXAIR's Adjustable Air Amplifier

EXAIR’s Adjustable Air Amplifier

EXAIR Air Amplifiers are designed to have large amplification ratios (the ratio between the amount of ambient air being moved compared to the amount of compressed air used).  This makes them perfect as an efficient air mover.  Being that this was a furnace application, the High Temperature Stainless Steel Adjustable Air Amplifier was required.  This Air Amplifier has a temperature rating of 374 deg. C, and it can be easily mounted at a safe distance to meet this temperature requirement.  The largest unit that we stock is the model 6034, a 4 inch (10cm) Stainless Steel Adjustable Air Amplifier.  It has a 24:1 amplification ratio that can create an outlet flow of 34 m^3/min.  (It would only need 1.42 m^3/min of compressed air at 5.5 bar to create this outlet flow).  For this customer to reach the 92.4 m^3/min to keep the smoke from escaping, he would need to install three units (3 * 34 m^3/min = 102 m^3/min).  He mounted the Stainless Steel Adjustable Air Amplifiers to some extraction wyes in their stack and added solenoids to them.  So, when the crew opened the door to load the coal, the Air Amplifiers would operate to keep the exhaust smoke from filling the room.  The company and operators were very satisfied as it made the environment clear to see and safe to work.

If you have an application where smoke and fumes are a nuisance, you can contact an Application Engineer at EXAIR to see if an Air Amplifier would work in your application.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Even Our Customers Are Sending “Holiday Gifts”

Lately, it certainly has felt like Christmas here at the factory.  Two customers sent in some sample parts  for us to test and provide solutions for their application issues.  Opening the box is like unwrapping a present, what surprise will we find inside?

The first customer currently uses the Line Vac to convey (3) different parts from the floor to a hopper for the assembly process.  (2) of the (3) parts transfer very well, but the third conveys a little too slowly. Having all three parts here at EXAIR allows us to set up testing and determine what the root cause is and recommend a solution that will work equally well for all three parts.

img_6271

The second is interested in our vacuum technologies to pick and place some fiber board material products.  Due to the curved surfaces and porous material, getting a good vacuum could be a challenge. By having the sample parts here, we can utilize our Demo Room, and try various E-Vacs with various vacuum cup designs and possibly the Line Vac or Air Amplifiers  to develop a good suction on each item.

img_6270

When it isn’t possible to send in samples, we will stand behind the EXAIR Unconditional Guarantee – purchase a stocked catalog item, and you have 30 days to try it your facility, in your process, under your real world conditions.  If after the 30 days you aren’t satisfied, send it back for a full refund – and try something else!

To discuss your application and find out information about sending in material samples to confirm that an EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

High Temperature Capability

Last week, a customer called in to talk about their application.  After aluminum and steel machining operations, parts are run through a washer system. The drying portion utilized a Super Air Amplifier to dry the sides and a Super Air Knife to dry off the top. The wash temperature was running at 185°F.  The customer wanted to review the application and make sure the EXAIR products utilized in the process were rated to this temperature and to check on high the products could go, since the maximum possible temperature for the washer was listed as 250 °F.

air-knife-air-amplifer

Drying Section – Utilizing EXAIR Air Amplifier (near top) and Super Air Knife

The Super Air Amplifier is rated to 275°, above the maximum possible condition.  The Super Air Knife was pre-installed with a stainless steel shim, enabling a maximum temperature rating of 400 °F. Both of the components are rated for temperatures in excess of the maximum possible washer temperature condition, and the customer felt confident with the system design.

EXAIR has several options in the Air Amplifier and Super Air Knife product families to allow for operation in high temperature applications.  For the Air Amplifier, the Super Air Amplifier and Aluminum Adjustable Air Amplifier have a maximum temperature rating of 275°F.  The Stainless Steel Adjustable Air Amplifier is rated to 400°F, and for the hottest of conditions, the High Temperature Air Amplifier is rated to 700°F.

Relating to Super Air Knife, the aluminum Super Air Knife is rated to 180°F.  With a stainless steel shim installed, the maximum increases to 400°F. The PVDF Super Air Knife, used in applications where chemical resistance is needed, can withstand temperatures up to 275°F. And for the most extreme temperature environments, the Type 303 and Type 316 Stainless Steel Super Air Knives are rated up to 800°F.

To discuss your application and how an Air Amplifier and Super Air Knife or any EXAIR Intelligent Compressed Air Product can help your process, feel free to contact EXAIR and one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

Removing Debris from Jars Prior To Filling

pv-500-jar-image-without-sleeve

These PET jars needed a way to remove static dust prior to filling with product

Back in the spring of this year I had some interaction with a customer in India about a Vortex Tube application.  At the time, they were facing an overheating condition and needed some guidance as to which model would provide the best solution.

Fast forward to this week and this same customer reached out to me again, this time for a static problem.  The application in question was plagued with difficulty in removing small dust particles from the inside of PET jars (shown above).  The jars range from 220-260mm in height (8.6”-10.25”), 80-100mm (3.1”-4”) in diameter, and travel through the process at a speed of ~40 units per minute.

Due to static charge, the dust in this application would adhere to the inside of the jars, presenting a problem with filling during the next stage of the process.  What this customer needed was a way to remove the static, blow away the dust, and then pull a slight vacuum on the jars as a safeguard against any remaining dust.

The solution was to use the Stay Set Ion Air Jet to blow into the jars, removing the static and blowing away the dust, followed by a Super Air Amplifier to remove any dust particles which were not removed by the Ion Air Jet.

The customer was happy with this solution, but there was a bit of hesitation as to whether the Air Amplifier would be able to truly remove debris from the jars.  In an effort to visualize the effects of an Air Amplifier on this type of application I made the short video below.

This video shows paper pieces inside of a cylinder of comparable height to the jars in this application.  After the paper is placed in the cylinder the model 120021 Super Air Amplifier is used to pull the paper out of the cylinder, mimicking the effect it will have on residual dust in the customer’s application.  After seeing the video the customer was confident in the application solution.

Providing this type of assistance for our customers is nothing new for us at EXAIR.  We’re available via phone, online chat, or email for all of our customers, and commit to taking the time needed to really provide the assistance needed.  If you find yourself in need of solid engineering support for an application in your facility, contact an EXAIR Application Engineer.

 

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Replacing Water Cooling With Air Amplifiers

image003

Copper tubing in need of air-powered cooling

The copper tubing shown above is heated in an annealing furnace to a temperature of 175°C (347°F).  This tubing is stacked on racks in 100kg rolls, with 4-6 rolls of copper per rack, and then fed into the oven shown below.  When the tubing exits the oven, water is used to cool the copper to a temperature of approximately 35°C (95°F) with an ambient temperature of ~20°C (68°F).  While effective, the use of water to cool the copper is something the manufacturer would like to replace due to constant maintenance, safety issues and cleanup time, preferring instead to use air to provide the required cooling.

image008

The copper tubing travels through this oven

image-4

The racks used to stack the copper tubing

I’ve blogged before about the process of determining how much air volume is needed to remove a specific amount of heat.  (You can read previous blogs here and here.)  This application was no different, and I used the flow chart shown below to determine the volume of 20°C ambient air needed to cool this aluminum.

heat load calc process

Airflow calculation process

Using the process outlined above, I determined the application would need 1,133 CFM of air at 20°C to cool these copper coils in one minute. This application, however, has up to 20 minutes available to cool these coils, allowing for a reduced volume of air.  Extending the time available to 2 minutes, and thus reducing the volume requirement to 566.5 CFM (566.5 CFM for 2 minutes = 1,133 CFM for 1 minute), we can definitively say that a series of our model 120022 Super Air Amplifier will be able to provide ample cooling.  (See below for airflow from model 120022 at 5.5 BARG (80 PSIG) at a distance of 6” from the Air Amplifier outlet.)  And, in order to evenly cool the coils, (4) of these Air Amplifiers were recommended, distributed evenly around the coils.

120022-performance-specs

Performance for model 120022 operated at 80 PSIG shown in the red circle on the right

Using a bit of calculation, we were able to provide a specific solution for this customer, eliminating the need for water in the cooling phase of this application.  If you have a similar application, or would like to discuss a compressed air solution for your application, contact an EXAIR Application Engineer.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

%d bloggers like this: