Bed Coffee and the Coanda Profile

Photo by Stocksnap and licensed by Pixabay

Every weekend my wife craves her “bed coffee”. I do my best to bring her some coffee in bed at least one, if not both weekend days. It makes her happy, and when she’s happy… The only thing I truly despise about this act of kindness is the actual pouring of the coffee. Now, I’m a decently smart guy but pouring this weekend coffee is a mess. Every time I end up with coffee on the counter, and many times on the mug. And when it gets on the mug it’s over, because it goes to the bottom of the mug and if I forget to wipe that off? Well, it gets on the sheets, because she inevitably rests her coffee on the sheets, and somehow this is my fault, and now she’s not happy anymore… (in fairness, she is still happy and just busts my chops about this part). But why does this happen to me?

It is a little refreshing to realize that I am just a victim of this scientific phenomenon called the Coanda profile. When I start to pour the coffee, the stream adheres to the outer wall of the coffee pot. This causes the coffee to run down the pot and onto the counter, where the cups are sitting (getting that mug bottom soaked in coffee). This is partially caused by the Coanda effect, and partially caused by me not being awake enough to outsmart a coffee pot. The simple solution is to simply increase the flow rate, right? This is correct however, this does not eliminate the Coanda Effect. In fact, even if you are smarter than me you will notice, after you pour the coffee, there is liquid on the side of the pot. That liquid may only be in the form of steam but it’s there, just to a lesser degree. The solution to avoid the mess, is to adjust the pot so that the pour angle is such that gravity overpowers the majority of the Coanda effect. Many times, in my case, this adjustment is too late…

The Coanda phenomena closely depends on several factors, the speed of the jet flow (pouring at a steeper angel), the flow rate (pouring more or less volume over time), and the profile of the container. I believe that a mad scientist invented my particular coffee pot with full intention of messing up countertops all over the world. In fact, he may be a super villain.

At EXAIR, we utilize the Coanda Profile to our benefit on most products. Here are 2 products that are perfect examples of how we use the Coanda Profile to maximize the performance of our products.

Air Amplifiers use the Coanda Effect to generate high flow with low consumption.
Compressed air flows through the inlet (1) to the Full Flow (left) or Standard (right) Air Knife, into the internal plenum. It then discharges through a thin gap (2), adhering to the Coanda profile (3) which directs it down the face of the Air Knife. The precision engineered & finished surfaces optimize entrainment of air (4) from the surrounding environment.

As you can see above, using the Coanda Profile correctly, dramatically increases the efficiency and the entrainment of air in our products. Between the Coanda effect, and the air entrainment, some of our products like the Super Air Amplifiers can output up to 25 times the amount of air that they consume.

Please contact us at anytime to see how the intelligent compressed air products of EXAIR can assist you in your application. And, don’t forget about bed coffee, it’s a win win for you and your spouse…

Thank you for stopping by,

Brian Wages

Application Engineer

EXAIR Corporation
Visit us on the Web
Follow me on Twitter

Cover Photo by monileoni and licensed by Pixabay

Villain image by chrismaguirang and licensed by Pixabay

3-1/2 EXAIR Pro Tips for Compressed Air Use

EXAIR offers industry leading Intelligent Compresses Air Products. Our products are engineered to comply with all relevant OSHA standards and are CE certified. When you purchase an EXAIR product, be it a Super Air Knife or a brass bulkhead fitting, you are expecting to receive a high quality and high performing product, and you will. If the product is not performing there is a very high probability that the problem is not the product.

So whatever could it be? And how can we fix the issue? Air supply going to the product is a common issue, so first we need to insure that there is a steady flow of the appropriate pressure and volume of air. Even though you may have a 100HP compressor, the distance form the product, the size of the pipes delivering the air, the smoothness of the inside of the pipes (is there internal rust and buildup), leaks and other restrictions of air flow rate all contribute to the overall performance.

A large majority of the product performance issues that are brought to us are caused by insufficient air supply in one form or another. Sometimes this is due to the overall size of the system, but many times it is at the point of use. Let’s assume that you have the right sized compressor to power all features in the shop. These next items are where we would want to focus and correct.

EXAIR Digital Flowmeter

Pro tip #1 – Use EXAIR Digital Flowmeters to monitor your air consumption. You should have a log of how much each compressed air tool / machine uses, and compare that to how much air is traveling down that leg of your facility. Leaks, corrosion, rust, and accidents happen. By monitoring and logging your SCFM in each major leg of your system, you will easily be able to narrow down root problems, and track leaks. You will also have solid answer when asked – “Do you have enough air for this?”.

Pressure Regulators “dial in” performance to get the job done without using more air than necessary.

Pro Tip #2 – Use a Tee Fitting and install a Pressure Regulator with Gauge at the point of use. This allows you to see, and control the pressure for each product. This removes all questions of air pressure at the point of use. Although your system seems large enough, many times the pressure is less at the point of use, due to restrictions, unknown leaks etc… Having the information from tip #1 and #2, you will easily be able to identify if your issue is the system, or the tool.

Pro Tip #2.5 – Turn it down (the pressure) if you can… Operate each compressed air application at a pressure just high enough for your desired result – not necessarily full line pressure. We have discussed in many other blogs how compressed air is your 3rd or 4th highest utility. If you optimize the pressure per application, you can save dollars. As a rule of thumb, if your system is operating at the 100 psig level, lowering the pressure by 2 psig will save 1% of energy used by the air compressor. A great example of this would be our Super Air Knives. Optimal use is at 80 psig, and “X” SCFM (based upon length of the Super Air Knife). At 80 psig and the proper SCFM, this flow will feel like having your hand out the window of your car when you are driving about 50 MPH. Your application may not need that much air flow, to get the job done. Turn it down and test it. Start at 80 psig and using the tools from tip #2, turn it up or down until your needs are met. Many of our products do not need to be used at full pressure to effectively solve your process problem.

Pro tip #3 – Use the proper sized lines, connectors and fittings. Pipe restriction can kill performance. Quick connects can be very problematic. Most quick connects are rated at the same size as the incoming pipe, tube or hose, but may actually have a much smaller inner diameter. As you can imagine, this oversight can cause significant performance issues, and end up costing more lack of production or defective product. Be it a quick connect, or any other connector or fitting, it is imperative not to restrict the air. This will result in problems, and lack of performance.

Please do not hesitate to reach to discuss any performance issues, or find out how we can help.

Thank you for stopping by,

Brian Wages

Application Engineer

EXAIR Corporation
Visit us on the Web
Follow me on Twitter

Adjustable Air Amplifiers: Versatile, Rugged, and EFFICIENT!

Adjustability is a key feature for several EXAIR Intelligent Compressed Air Products… for example our Adjustable Air Amplifiers.  The ‘adjustable’ part has to do with setting the air flow volume and force:

Just loosen the locking ring, and you can thread the plug out of, or in to, the body to increase, or decrease the flow and force of the developed flow.  There’s a hole in the plug (opposite the “EXAIR.com” stamp) so you can use a spanner wrench (another adjustable tool!) to thread the plug in or out.

You can get an amazing range of flow from a little twist*:

These are the performance values for a Model 6042 2″ Aluminum Adjustable Air Amplifier with a compressed air supply pressure of 80psig. Regulating the pressure can give you even lower…or higher…flows.                                              *0.002″ to 0.010″ is about 1/4 turn of the plug.

A gap of about 0.010″ is about the max for 80psig supply pressure.  Above that, the air flow overwhelms the Coanda profile, creating a turbulent ‘storm’ in the throat, hampering the efficiency and effectiveness. The proper “adjustment” for that is to select the next larger Air Amplifier!

While the range of air flow is certainly impressive, their versatility is another major factor in their selection.  I reviewed our Application Database (registration required) for real-life details on Adjustable Air Amplifiers “in the field” and found a litany of other benefits that made them better suited to particular installations than a Super Air Amplifier:

  • A customer who builds automated equipment incorporates the Model 6031 1-1/4″ SS Adjustable Air Amplifier to blow open bags with a puff of air as they move into position on an automated filling machine. They use it because it’s available in stainless steel construction, and it’s still compact & lightweight.
  • A mattress manufacturer uses Model 6043 3″ Aluminum Adjustable Air Amplifiers to cool mattress springs.  They’re lightweight, the perfect size to match the springs’ profile, and they can “dial them out” for high heat removal before putting springs on a rubber conveyor.
  • A tier 1 automotive supplier has Model 6234 4″ SS Adjustable Air Amplifier Kits installed on their robotic paint line to blow off moisture from parts to prevent water spotting between the wash cycle and the oven.  They use them because the stainless steel construction holds up to high heat due to the proximity to the ovens.
  • A food plant uses Model 6031 1-1/4″ SS Adjustable Air Amplifiers to improve the drying time of 3,000 liter mixers that must be washed between batches of different products.  The stainless steel construction holds up to the rigors of the frequent washdown in this area.
  • A bedding manufacturer replaced a regenerative blower with a Model 6041 1-1/4″ Aluminum Adjustable Air Amplifier for trim removal on stitched fabric at bedding manufacturer.  The blower was prone to failure from lint & dust; the Air Amplifier, with no moving parts, is not.  It’s also compact, lightweight, and virtually maintenance free.
  • A light bulb manufacturer installed Model 6030 3/4″ SS Adjustable Air Amplifiers on the ends of open pipes that were used to cool mercury lamp wicks.  This reduced noise levels significantly while providing the same cooling rate, and the stainless steel construction holds up to the heat of the operation.

Because of the simplicity of their design, Adjustable Air Amplifiers are also extremely adaptable to custom applications.  We’ve added threads or flanges to the inlets and outlets of several different sizes, to accommodate ease of mounting & installation:

Among other custom Air Amplifiers, we’ve put (left to right) threads on the outlet, ANSI flanges on the inlet/outlet, Sanitary flanges on the inlet/outlet, and Sanitary on the inlet/ANSI on the outlet. How are you installing your Air Amplifier?

Adjustable Air Amplifiers are available in both aluminum and 303SS construction, to meet most any environmental requirements…except extreme high heat.  In those cases, the Model 121021 High Temperature Air Amplifier is rated to 700°F (374°C) – significantly higher than the Aluminum – 275°F (135°C) or the Stainless Steel – 400°F (204°C).  They’re commonly used to circulate hot air inside furnaces, ovens, refractories, etc.

A Model 121021 1-1/4″ High Temp Air Amplifier directs hot air to a rotational mold cavity for uniform wall thickness of the plastic part.

Adjustability.  Versatility.  Durability.  If you’d like to know more about the Adjustable Air Amplifier, or any of EXAIR’s Intelligent Compressed Air Products, give me a call.

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Understanding Air Entrainment

EXAIR uses the word entrainment a lot, all of our blowoff products use the principle to amplify the air stream and increase efficiency. But, what is entrainment and what causes the phenomenon? Entrainment can be defined as a fluid that is swept along into an existing moving fluid. This brings Bernoulli’s equation into the picture. When looking at specific situations and conditions Bernoulli’s equation can show some interesting significance with gases.

Bernoulli’s Equation

Bernoulli’s equation takes into account four main variables which are Pressure (P), Density (r), Velocity (v), and a height difference (z); along with a single constant for gravity. you can see the relationship between the velocity squared and the pressure from the equation above.  Being that this relationship is a constant along the streamline; when the velocity increases; the pressure has to come down. Now we have to look at how fluids like to behave. Fluids within a system like to be at a constant pressure when at the same height and reach a state of equilibrium. This means that fluids will always flow towards a low pressure area, which means that if you create a constant low pressure area you can amplify the air stream. This is the same principle as to why airplanes can fly.

EXAIR Super Air Nozzle entrainment

Since compressed air can be an expensive utility, it is good to minimize it and maximize the surrounding entrained air. Therefore we have designed our products to use this entrainment principle to amplify the air blast while using less compressed air and more entrained ambient air. Products like our Super Air Knife can see an amplification ratio (ambient air to compressed air) of up to 40:1; this means for every 1 SCFM of compressed air used we are entraining 40 SCFM of ambient air.

EXAIR’s Super Air Knife

We use this principle for our Air Amplifiers, Air Knifes, Air Nozzles and Jets, Safety Air Guns, and our Gen4 Static Eliminators. Our goal is to save you money and give you better results in the process.  

If you have questions about any of our engineered Intelligent Compressed Air® Products, feel free to contact EXAIR or any Application Engineer.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook