Upgrade Blowoff Applications with Engineered Products to Increase Safety and Efficiency

At EXAIR, it’s our business to make sure that you get the most out of your compressed air system.  We’ve got a Six Step plan to help you do just that, and one of those steps is the topic of today’s blog:

We have a couple of ways to help with step #1.  You can use a Digital Flowmeter to measure your total compressed air usage, and take advantage of our Efficiency Lab service to determine the consumption of individual compressed air devices that may be running up the total.  Based on our performance tests of those devices, we can recommend suitable EXAIR Intelligent Compressed Air Products to replace them with, along with the expected reductions in air consumption & noise levels…quieter is always better too.

We’re going to skip right over Step #2…just for now…but if you can’t wait, click on the picture above for more on finding & fixing leaks.

Once you get our recommended replacements in (I mean, why wouldn’t you?), they’re going to be part of your compressed air system, so naturally, we want to make sure you get the most out of them as well.  Key considerations are suitable supply lines, and proper installation.

In the case of a Super Air Nozzle or Air Jet, these are oftentimes one and the same.  They’re all small enough, and lightweight enough, to be adequately supported by compressed air piping (assuming the piping is adequately supported,) metal tubing (via a compression fitting adapter,) or even mounting solutions like our Stay Set Hoses.

Just a few ideas for installing an EXAIR Super Air Nozzle

Sometimes, though, you need a firm, vibration-resistant mounting…that’s where we recommend our Swivel Fittings.  A hex retainer tightly locks the ball in position, but allows for easy repositioning when loosened.  They come in standard NPT sizes from 1″ NPT down to 1/8″ NPT, and we even have them for the M4, M5, and M6 metric threads for our Atto, Pico, and Nano Super Air Nozzles.

Typical threaded fittings are limited in the angles you can achieve. EXAIR Swivel Fittings provide 50° of adjustability.

Even a highly efficient blow off needs to be aimed well in order to do its job well.  If you’d like to discuss how to get the most out of your compressed air system – or our products – give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Engineered Compressed Air Nozzles and Utility Rebates

When EXAIR started to manufacture compressed air products, we created a culture in making high quality products that are safe, effective, and efficient.  Being leaders in this industry, we created a program, the Efficiency Lab, to compare blow-off devices with EXAIR products in noise levels, flow requirements, and force measurements.  With calibrated test equipment, we compare the data in a qualified report to share with our customers.  This information can be helpful to determine the total amount of air savings and safety improvements that EXAIR products can offer.

Flat SANs 1in
Zinc Aluminum models are suitable for general purpose blow off (left) and 316SS models are specified for food/pharma and high heat applications.

In conjunction with the Efficiency Lab, we created a Cost Savings Calculator.  It is a quick way to view payback periods and annual savings when using EXAIR products.  As an example, I used a 1” Flat Super Air Nozzle, model 1126, and compared it to a 1/8” open pipe.  (The reason behind the comparison is that the model 1126 can screw onto the end of the 1/8” NPT pipe.)  With an operation of 24 hours/day for 250 days a year, the amount of air used by an 1/8” open pipe is near 70 SCFM (1,981 SLPM) at 80 PSIG (5.5 Bar).  The model 1126 has an air consumption of 10.5 SCFM (297 SLPM) at 80 PSIG (5.5 Bar).  By putting the information in the Cost Savings Calculator, it determined that the ROI was in 2.1 days.  The annual savings was $5,355 USD per year.  Imagine if you replaced ten blow-off spots in your facility, the amount of money that could be saved.  Here is the worksheet below:

flat 1

The people that started to notice the savings were the utility companies that make electricity.  Depending on your location, electrical suppliers initiated a rebate program to use engineered nozzles in your facility.  Similar to other energy saving rebates, like LED light bulbs and high efficiency furnaces, the electrical providers notice a big savings when using EXAIR products.  If you qualify, the total cost to purchase and implement the EXAIR Super Air Nozzles are reduced.(Even if a rebate program has not been implemented in your area, the idea of saving energy and compressed air makes it very profitable and environmentally sound in changing over to EXAIR products).

To see if your utility offers rebates on compressed air optimizations, go to the DSIRE database. This database is easy to search and informative.

For Example, here in Ohio Duke Energy has a Prescriptive Incentive Program for its customers. The Prescriptive Incentive Program makes it easy for Duke Energy customers to receive an incentive for their natural gas and electric energy efficiency projects. Prescriptive Incentives are energy efficient measures paid per-unit, reimbursing the customer up to the total cost (including materials and labor) after the measures have been installed. See the image below for their incentives for using Engineered Nozzles;

capture.jpg
Ohio Duke Energy Prescriptive Incentive Program

https://www.duke-energy.com/business/products/smartsaver/industrial-equipment

To discuss your application and how an EXAIR Intelligent Compressed Air Product can help your process and save you money, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

 

The Case For EXAIR Swivel Fittings

One of the more common questions we get here in the Application Engineering department at EXAIR is…

“What’s the best angle to position a Super Air Nozzle?”

The simple (and perhaps a little snarky, but I swear that’s not intended) answer is…

“The angle it takes to get the results you need.”

But wait, there’s more…we’re not going to leave anybody hanging like that. Many blow off applications are going to be best served by a “sweep” of air, at a low angle. That will be ideal for removing a light layer of dust from a relatively flat and smooth surface. A bit larger angle, relative to the surface, may be necessary if you need some impingement force to dislodge sticky, clumpy, or mildly adhesive debris.  Rarely will you want to blow directly, at a perpendicular angle, to a material’s surface.  An exception to this might be if you’re trying to remove excess moisture from a porous and thin material, like a web fiber.

Regardless of what angle you need to aim your Super Air Nozzle, there are several ways to do it.  You can use a compression fitting them onto bendable copper tubing…just don’t bend it too much or too often.  We’ve got Stay Set Hoses that allow for quick & easy repositioning…they come in lengths from 6″ to 36″, and are in stock.

EXAIR Stay Set Hoses and Swivel Fittings are ideal for installation and positioning of your Super Air Nozzle.

If you want to hold it in place firmly and securely, you’re looking for a Swivel Fitting.  They’re available for almost all of our Super Air Nozzles, from the Atto to the 1″ NPT Model 1114 High Force Super Air Nozzle.  They offer 50° of total movement, and are made of Stainless Steel for durability in most any environment.

EXAIR Swivel Fittings have male NPT threads on one end, and female NPT on the other.  The smaller Swivels, for the Atto, Pico, and Nano Super Air Nozzles, have M4x0.5mm, M5x0.5mm, and M6x0.75mm female threads, respectively, in the ball of the swivel itself for direct threading of these small Super Air Nozzles.

EXAIR’s Swivel Fitting Family

Swivel Fittings can also be used with a host of other EXAIR products.  In addition to the Super Air Nozzles, for example, they’ve historically been very popular with our Air Amplifiers.  Here’s a short informational video showing just how versatile they are:

EXAIR Intelligent Compressed Air Products are made to be easy to install & operate.  This is our intent from Research & Development, to Shipping & Receiving.  If you have questions, give me a call.  I want you to get the most out of our products!

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Benefits of Atomized Liquid Nozzles vs. Liquid Nozzles

There are a great many applications that require a spray (as opposed to a stream) of liquid. Certain droplet sizes, and flow rates, are beneficial for certain applications. For example, if you’re fighting a fire, you want as high of a flow rate as possible – the more water you douse the fire with, the quicker it goes out.  You also want a fairly large droplet size, since a mist would tend to evaporate instead of extinguishing the flames.

Pressure washers also benefit from higher (though not near as high as fire hose) flow rates, and droplet sizes.  You want an appreciable flow rate, because that means high velocity, and good sized droplets combine that velocity with their relative mass to “blast” away dirt and detritus from the surface.

Medicine delivery devices, like asthma inhalers, are designed to produce mid-sized droplets, but pretty low (and controlled) flows.  The droplets need to be small enough to efficiently spread the medicine through the breathing passages, but large enough to where they won’t evaporate before they ‘plant’ on the nasal & bronchial membranes to get absorbed.

These are examples of “liquid-only” nozzles…no other media or means of force are used to effect the spraying action.  Most of the time, the droplet sizes in these applications are measured in hundreds of microns, which “liquid-only” nozzles are ideally suited to generate.  Other applications, however, call for much smaller droplet sizes…such as those only attainable through atomization.

EXAIR Atomizing Spray Nozzles use compressed air to create a fine mist of liquid, with droplet sizes as low as 22 microns.

A typical “liquid-only” nozzle is capable of producing droplet sizes of 300-4,000 microns. Atomizing Nozzles’ droplet sizes are consistently under 100 microns, and can be as small as 20 microns!

Small droplet size is key to cost effectiveness in many applications:

  • Think about expensive coatings…the smaller the droplet size, the better and more even the coverage, and the less you have to spray (and pay) out.
  • Or humidification…smaller droplet size means more stays airborne, for longer, and in a larger space.
  • Petroleum based lubricants, by their nature, only require a thin layer for best results.  Smaller droplets make as even and thin of a layer as possible.
  • Dust control is much more effective with smaller droplet sizes, since the longer the mist lingers in the air, the more dust particles the individual droplets will adhere to…and then drop with them to the surface.  This also prevents getting the surface of the material any wetter than it has to be.
142 distinct models. 8 different patterns. Liquid flow rates from 0.1 to 303 gallons per hour. If you’ve got a spraying application, EXAIR has an Atomizing Nozzle for you!

If you’d like to discuss a liquid spraying application, I’d love to hear from you.  Call me.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Adjustable Air Amplifiers Aren’t Just About Adjustability

Adjustability is a key feature for a great many devices:

  • An adjustable wrench – or as I like to call it, the trusty “all 16ths” – is my go-to for work around the house involving anything with a hex…fittings under the sink when I’m cleaning out a drain, nuts & bolts on furniture or household items needing some tightening (or loosening,) etc.  I don’t get out my combination-end wrenches for much except automobile maintenance.
  • Speaking of sinks, my kitchen faucet lets me adjust water flow (and temperature) which is important because I use different flow rates (and temperatures) if I’m getting a tablespoon of water, or if I’m rinsing my hands, or if I’m filling the sink to do dishes.
  • Speaking of tablespoons, I’ve even got an adjustable measuring spoon that lets me get a full tablespoon, a half a teaspoon, or anywhere in between, by moving a lever block back & forth in the spoon head.

Adjustability is a key feature for several EXAIR Intelligent Compressed Air Products too…like our Adjustable Air Amplifiers.  The ‘adjustable’ part has to do with setting the air flow:

Just loosen the locking ring, and you can thread the plug out of, or in to, the body to increase, or decrease the flow and force of the developed flow.  There’s a hole in the plug (opposite the “EXAIR.com” stamp) so you can use a spanner wrench (another adjustable tool!) to thread the plug in or out.

You can get an amazing range of flow from a little twist*:

These are the performance values for a Model 6042 2″ Aluminum Adjustable Air Amplifier with a compressed air supply pressure of 80psig. Regulating the pressure can give you even lower…or higher…flows.                                              *0.002″ to 0.010″ is about 1/4 turn of the plug.

A gap of about 0.010″ is about the max for 80psig supply pressure.  Above that, the air flow overwhelms the Coanda profile, creating a turbulent ‘storm’ in the throat, hampering the efficiency and effectiveness.  The proper “adjustment” for that is to select the next larger Air Amplifier!

While the range of air flow is certainly impressive, their versatility is another major factor in their selection.  I reviewed our Application Database (registration required) for real-life details on Adjustable Air Amplifiers “in the field” and found a litany of other benefits that made them better suited to particular installations than a Super Air Amplifier:

  • A customer who builds automated equipment incorporates the Model 6031 1-1/4″ SS Adjustable Air Amplifier to blow open bags with a puff of air as they move into position on an automated filling machine. They use it because it’s available in stainless steel construction, and it’s still compact & lightweight.
  • A mattress manufacturer uses Model 6043 3″ Aluminum Adjustable Air Amplifiers to  cool mattress springs.  They’re lightweight, the perfect size to match the springs’ profile, and they can “dial them out” for high heat removal before putting springs on a rubber conveyor.
  • A tier 1 automotive supplier has Model 6234 4″ SS Adjustable Air Amplifier Kits installed on their robotic paint line to blow off moisture from parts to prevent water spotting between the wash cycle and the oven.  They use them because the stainless steel construction holds up to high heat due to the proximity to the ovens.
  • A food plant uses Model 6031 1-1/4″ SS Adjustable Air Amplifiers to improve the drying time of 3,000 liter mixers that must be washed between batches of different products.  The stainless steel construction holds up to the rigors of the frequent washdown in this area.
  • A bedding manufacturer replaced a regenerative blower with a Model 6041 1-1/4″ Aluminum Adjustable Air Amplifier for trim removal on stitched fabric at bedding manufacturer.  The blower was prone to failure from lint & dust; the Air Amplifier, with no moving parts, is not.  It’s also compact, lightweight, and virtually maintenance free.
  • A light bulb manufacturer installed Model 6030 3/4″ SS Adjustable Air Amplifiers on the ends of open pipes that were used to cool mercury lamp wicks.  This reduced noise levels significantly while providing the same cooling rate, and the stainless steel construction holds up to the heat of the operation.

Because of the simplicity of their design, Adjustable Air Amplifiers are also extremely adaptable to custom applications.  We’ve added threads or flanges to the inlets and outlets of several different sizes, to accommodate ease of mounting & installation:

Among other custom Air Amplifiers, we’ve put (left to right) threads on the outlet, ANSI flanges on the inlet/outlet, Sanitary flanges on the inlet/outlet, and Sanitary on the inlet/ANSI on the outlet. How are you installing your Air Amplifier?

Adjustable Air Amplifiers are available in both aluminum and 303SS construction, to meet most any environmental requirements…except extreme high heat.  In those cases, the Model 121021 High Temperature Air Amplifier is rated to 700°F (374°C) – significantly higher than the Aluminum – 275°F (135°C) or the Stainless Steel – 400°F (204°C).  They’re commonly used to circulate hot air inside furnaces, ovens, refractories, etc.

A Model 121021 1-1/4″ High Temp Air Amplifier directs hot air to a rotational mold cavity for uniform wall thickness of the plastic part.

Adjustability.  Versatility.  Durability.  If you’d like to know more about the Adjustable Air Amplifier, or any of EXAIR’s Intelligent Compressed Air Products, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Super Air Nozzles and Stay Set Hoses to Replace Open Tubes

I recently worked with an company that performs energy audits and they were working with a food company to review and propose ways to reduce the energy consumption throughout the plant. One area where we were able to help was on an onion peeling machine, shown below:

Vegetable Peeler Wide
Onion Peeler With Screw Conveyor and Blow off Tubes

The area of machine in question used a screw conveyor and friction source to help loosen the peels and fifteen (15) 1/4″ O.D. open ended tubes, which were noisy and unsafe, to blow the peels completely off and away form the onion. The auditor was able to install an air flow meter on the system and found that the machine was consuming 220 SCFM of compressed air for this operation.

Vegetable Peeler Detail
(15) Total, 1/4″ Tubes Used to Blow Air and Help Remove the Peels

We proposed to replace the tubes with a 6″ Stay Set Hose and the model 1103 Mini Super Air Nozzle.  Each model 1103 Mini Super Air Nozzle will consume just 10 SCFM of 80 PSIG compressed air. Attached to the 6″ Stay Set Hose, the nozzle can be placed exactly where needed and aimed appropriately. A strong blast of air rated at 0.56 lbs (9 ozs.), and ultra quiet at 71 dBA, the Mini Super Air Nozzle delivers the results needed.

1103-e1543953915424.jpg
Model 1103 – Mini Super Air Nozzle

1103 Performance

1103 Pattern

9256
Model 9256 6″ Stay Set Hose

The Stay Set Hose has “memory” and will not creep or bend, simply install the 1/4 NPT fitting into the compressed air supply side, an thread the 1/8 NPT Mini Super Air Nozzle into the other end and position as needed!

Fifteen (15) of the Mini Super Air Nozzles will pass 150 SCFM of compressed air compared to the current usage of 220 SCFM, resulting in a 70 SCFM drop, or a 31.8 % reduction.  At a typical cost of $0.25 per 1000 Cubic Feet of Compressed Air, the nozzles would save $1.05 per hour of operation. Rate of Return yields a full pay-off in just 43 days of operation (24 hours per day operation)!

If you are looking for ways to save on compressed air usage in your facility that is safe to operate and quiet to use, we will have a solution for you.

If you have questions about any of the 16 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

 

What’s In My Air, And Why Is It Important?

Everyone knows there’s oxygen in our air – if there wasn’t oxygen in the air you’re breathing right now, reading this blog would be the least of your concerns. Most people know that oxygen, in fact, makes up about 20% of the earth’s atmosphere at sea level, and that almost all the rest is nitrogen. There’s an impressive list of other gases in the air we breathe, but what’s more impressive (to me, anyway) is the technology behind the instrumentation needed to measure some of these values:

Reference: CRC Handbook of Chemistry and Physics, edited by David R. Lide, 1997.

We can consider, for practical purposes, that air is made up of five gases: nitrogen, oxygen, argon, carbon dioxide, and water vapor (more on that in a minute.)  The other gases are so low in concentration that there is over 10 times as much carbon dioxide as all the others below it, combined.

About the water vapor: because it’s a variable, this table omits it, water vapor generally makes up 1-3% of atmospheric air, by volume, and can be as high as 5%.  Which means that, even on a ‘dry’ day, it pushes argon out of the #3 slot.

There are numerous reasons why the volumetric concentrations of these gases are important.  If oxygen level drops in the air we’re breathing, human activity is impaired.  Exhaustion without physical exertion will occur at 12-15%.  Your lips turn blue at 10%.  Exposure to oxygen levels of 8% or below are fatal within minutes.

Likewise, too much of other gases can be bad.  Carbon monoxide, for example, is a lethal poison.  It’ll kill you at concentrations as low as 0.04%…about the normal amount of carbon dioxide in the atmosphere.

For the purposes of this blog, and how the makeup of our air is important to the function of EXAIR Intelligent Compressed Air Products, we’re going to stick with the top three: nitrogen, oxygen, and water vapor.

Any of our products are capable of discharging a fluid, but they’re specifically designed for use with compressed air – in basic grade school science terms, they convert the potential energy of air under compression into kinetic energy in such a way as to entrain a large amount of air from the surrounding environment.  This is important to consider for a couple of reasons:

  • Anything that’s in your compressed air supply is going to get on the part you’re blowing off with that Super Air Nozzle, the material you’re conveying with that Line Vac, or the electronics you’re cooling with that Cabinet Cooler System.  That includes water…which can condense from the water vapor at several points along the way from your compressor’s intake, through its filtration and drying systems, to the discharge from the product itself.
  • Sometimes, a user is interested in blowing a purge gas (commonly nitrogen or argon) –  but unless it’s in a isolated environment (like a closed chamber) purged with the same gas, most of the developed flow will simply be room air.

Another consideration of air make up involves EXAIR Gen4 Static Eliminators.  They work on the Corona discharge principle: a high voltage is applied to a sharp point, and any gas in the vicinity of that point is subject to ionization – loss or gain of electrons in their molecules’ outer valences, resulting in a charged particle.  The charge is positive if they lose an electron, and negative if they gain one.  Of the two gases that make up almost all of our air, oxygen has the lowest ionization energy in its outer valence, making it the easier of the two to ionize.  You can certainly supply a Gen4 Static Eliminator with pure nitrogen if you wish, but the static dissipation rate may be hampered to a finite (although probably very small) degree.

At EXAIR Corporation, we want to be the ones you think of when you think of compressed air.  If you’ve got questions about it, give us a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

Air photo courtesy of Bruno Creative Commons License