Cold Guns for Spot Cooling or Replacing Mist Systems

By using only a source of compressed air, the Cold Gun and High Power Cold Gun produces a stream of clean, cold air 50°F (28°C) below your compressed air supply temperature. The Cold Gun is very quiet at only 70 dBA and has no moving parts to wear out. Just supply it with clean compressed air and it’s maintenance free.

How does it work, and what are the benefits?

  • The Cold Gun uses compressed air to produce a stream of clean, cold air at 50°F (28°C) below supply air temperature. Generally this will be 20°F-30°F outlet temperature.
  • They use Vortex Tube technology…no moving parts to wear out.

How A Vortex Tube WorksInstant cold air flow with no moving parts!

  • Cold flow and temperature are preset to optimize cooling capability, and are non-adjustable to prevent freeze-up during use.
  • Eliminates the expense of both the purchase & disposal of cutting fluids when replacing expensive mist systems.
  • Removes the potential for health problems associated with breathing mist & vapors, and the safety issue of slipping on a wet floor.

Cold Gun Aircoolant System selection is easy & straightforward…we offer a standard, and a High Power version to meet your specific needs.

CG
Four systems to choose from, to meet most any need.

We also offer Single & Dual Point Hose Kits, to further meet the needs of your application.

One of the best applications I have seen with our cold gun came from a customer in Peru. They are a gold mining operation and they were having trouble with the liquid they were using to cool a saw. Read all about it here!

IMG_20180613_094120_HDR

If you have an application that you believe would be better served by the use of an EXAIR Cold Gun, give us a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Adjustable Spot Cooler: How Cold Can You Go?

I had the pleasure of discussing a spot cooling application with a customer this morning. He wanted to get more flow from his Adjustable Spot Cooler, but still keep the temperature very low.  He machines small plastic parts, and he’s got enough cold flow to properly cool the tooling (preventing melting of the plastic & shape deformation) but he wasn’t getting every last little chip or piece of debris off the part or the tool.

After determining that he had sufficient compressed air capacity, we found that he was using the 15 SCFM Generator. The Adjustable Spot Cooler comes with three Generators…any of the three will produce cold air at a specific temperature drop; this is determined only by the supply pressure (the higher your pressure, the colder your air) and the Cold Fraction (the percentage of the air supply that’s directed to the cold end…the lower the Cold Fraction, the colder the air.)

Anyway, the 15 SCFM Generator is the lowest capacity of the three, producing 1,000 Btu/hr of cooling. The other two are rated for 25 and 30 SCFM (1,700 and 2,000 Btu/hr, respectively.)

He decided to try and replace the 15 SCFM Generator with the 30 SCFM one…his thought was “go big or go home” – and found that he could get twice the flow, with the same temperature drop, as long as he maintained 100psig compressed air pressure at the inlet port.  This was more than enough to blow the part & tool clean, while keeping the cutting tool cool, and preventing the plastic part from melting.

Model 3925 Adjustable Spot Cooler System comes with a Dual Outlet Hose Kit, and three Generators for a wide range of cooling performance.

If you’d like to find out how to get the most from a Vortex Tube Spot Cooling Product, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Vortex Tube Cold Fractions

Vortex Tubes are the perfect solution when dealing with a variety of spot cooling applications. They use compressed air to produce a cold air stream and a hot air stream, with temperatures ranging from as low as -50°F  up to +260°F (based on ambient supply temperature) and providing as much as 10,200 Btu/hr. of cooling capacity. By simply adjusting the valve in the hot end of the Vortex Tube, you are able to control the “cold fraction” which is the percentage of air consumed by the vortex tube that is exhausted as cold air versus the amount of air exhausted as hot air. Our small, medium and large Vortex Tubes provide the same temperature drop and rise, it’s the volume of air that changes with the various sizes.

Vortex Tubes
Vortex Tubes are available in small, medium and large sizes with various flows and cooling capacities.

When looking at the below performance chart, you will see that “Pressure Supply” and “Cold Fraction %” setting all play a part in changing the performance of the Vortex Tubes. Take for example, an operating pressure of 100 PSIG and cold fraction setting of 20%, you will see a 123°F drop on the cold side versus a 26°F temperature rise on the hot side. By the using the same Vortex Tube and keeping the operating pressure at 100 PSIG but changing the cold fraction to 80%, you will now see a 54°F temperature drop on the cold side and a 191° rise at the hot end.

Vortex Tube Performance Data
Vortex Tube Performance Chart

We’ve looked at how the cold fraction changes the temperature, but how does it change the flow for the various Models?

Say you are using a Model # 3240 Medium Vortex Tube which consumes 40 SCFM @ 100 PSIG. Again with the cold fraction set at 80% (80% of the consumed compressed air out of the cold end), you would flow 32 SCFM at the cold air exhaust.

40 SCFM x 0.8 (80% CF) = 32 SCFM

Using the same Model # 3240 Medium Vortex Tube but now with a 20% cold fraction (20% of consumed compressed air out of the cold end), you would flow 8 SCFM at the cold exhaust.

40 SCFM x 0.20 (20% CF) = 8 SCFM

As you can see, to achieve the colder air temperatures, the volume of cold air being exhausted is reduced as well. This is important to consider when making a Model selection. Some other considerations would be the operating pressure which you can see also has a significant effect on performance. Also the compressed air supply temperature because the above temperatures are temperature differentials, so in the example of the 80% cold fraction there is a 115F temperature drop from your inlet compressed air temperature.

If you need additional assistance, you can always contact myself or another application engineer and we would be happy to make the best selection to fit your specific need.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN