EXAIR Digital Flowmeters With Wireless Capability

“You can’t manage what you don’t measure” is a well-known axiom in engineering & process improvement circles.  We talk to callers every day who are keen on conserving compressed air use in their facilities by making a few tweaks, considering a complete overhaul, or more often, some point in between.  Bottom line (literally) is, compressed air isn’t cheap, so small gains in efficiency can add up.  And large gains can be complete game-changers…following our Six Steps To Optimizing Your Compressed Air System has resulted in users being able to shut down 50 and 100 HP air compressors, saving thousands of dollar A MONTH in operating costs.

Step #1 is measurement, and that’s where the EXAIR Digital Flowmeter comes in.  They’re easy to install, highly accurate, extremely reliable, and available for just about any size pipe used for compressed air distribution.  They can output a 4-20mA signal straight from their PCB board, or serial comms (RS485) through an optional control board.  USB Data Loggers and Summing Remote Displays have proven to be value-added accessories for data management as well.

Summing Remote Display (left) for remote indication and totalizing data. USB Data Logger takes data from the Digital Flowmeter to your computer and outputs to its own software (shown above) or Microsoft Excel.

If you want to go wireless, we can do that too: using ZigBee mesh network protocol, a radio module is installed in the Digital Flowmeter with wireless gateway to transmit data to an Ethernet connected gateway.  The transmitting range is 100 ft (30 meters,) and the data can be passed from one radio module to another, allowing for multiple Digital Flowmeter installations to extend the distance over which they can communicate with the computer you’re using for central monitoring.  Advantages include:

  • Wireless monitoring of EXAIR Digital Flowmeters throughout your plant.
  • Prevents unwanted joining upon the network.
  • Monitoring software is included at no extra charge.
  • Measures & transmits both current air usage, and cumulative air usage data.
  • 128 bit encryption for wireless transmissions.
  • Comes configured & programmed, out of the box, available for installation on 1/2″ to 4″ SCH40 iron pipe, or 3/4″ to 4″ Type L copper pipe.
Digital Flowmeter w/ Wireless Capability, Gateway, and Drill Guide Kit

If you’d like to find out more about how easy it is to measure, manage, and optimize your compressed air usage, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Laminar Flow and Digital Flowmeters: An Explanation On How To Achieve Laminar Flow

When I see turbulent flow vs. laminar flow I vaguely remember my fluid dynamics class at the University of Cincinnati.  A lot of times when one thinks about the flow of a liquid or compressed gas within a pipe they want to believe that it is always going to be laminar flow. This, however, is not true and there is quite a bit of science that goes into this.  Rather than me start with Reynolds number and go through flow within pipes I have found this amazing video from a Mechanical Engineering Professor in California. Luckily for us, they bookmarked some of the major sections. Watch from around the 12:00 mark until around the 20:00 mark. This is the good stuff.

The difference between entrance flow, turbulent flow and laminar flow is shown ideally at around the 20:00 mark.  This length of piping that is required in order to achieve laminar flow is one of the main reasons our Digital Flowmeters are required to be installed within a rigid straight section of pipe that has no fittings or bends for 30 diameters in length of the pipe upstream with 5 diameters of pipe in length downstream.

This is so the meter is able to measure the flow of compressed air at the most accurate location due to the fully developed laminar flow. As long as the pipe is straight and does not change diameter, temperature, or have fittings within it then the mass, velocity, Q value all stay the same.  The only variable that will change is the pressure over the length of the pipe when it is given a considerable length.

Another great visualization of laminar vs. turbulent flow, check out this great video.

 

If you would like to discuss the laminar and turbulent flow please contact an Application Engineer.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

1 -Fluid Mechanics: Viscous Flow in Pipes, Laminar Pipe Flow Characteristics (16 of 34) – CPPMechEngTutorials – https://www.youtube.com/watch?v=rQcZIcEa960

2 – Why Laminar Flow is AWESOME – Smarter Every Day 208 – SmarterEveryDay – https://www.youtube.com/watch?v=y7Hyc3MRKno

 

 

Video Blog: Compressed Air Sensor/Solenoid Control for Maximum Efficiency

The Electronic Flow Control, or EFC, is an EXAIR Optimization product to reduce air consumption in your facility.  Saving this electricity that is used to make compressed air will save you money and will help you to “Go Green”.  The EFC has 8 different modes that uses a timing sequence with a Photoelectric Sensor to turn on/off a solenoid valve.  In this video, I will go through each mode to demonstrate how the Electronic Flow Control will perform.

John Ball
Application Engineer

Email: johnball@exair.com
Twitter: @EXAIR_jb

Steps to Find Compressed Air Leaks in your Facility

The Second Step to optimize your compressed air system is to Find and fix leaks in your compressed air system. The reason leaks are important to find and fix is because they can account for 20-30% of a compressors total output. A compressed air leak fixing process can save 10-20% of that lost volume.

6-steps-from-catalog

Unintentional leaks will result in increased maintenance issues and can be found in any part of a compressed air system. Leaks can be found at a poorly sealed fitting, quick disconnects and even right through old or poorly maintained supply piping. Good practice will be to develop an ongoing leak detection program.

The critical steps needed for an effective leak detection program are as follows:

  1. Get a foundation (baseline) for your compressed air use so you have something to compare once you begin eliminating leaks. This will allow you to quantify the savings.
  2. Estimate how much air you are currently losing to air leaks. This can be done by using one of two methods.
    • Load/Unload systems, where T= Time fully loaded and t=Time fully unloaded:
        • Leakage percent = T x 100
          ——
          (T + t)
    • Systems with other controls where V=cubic feet, P1 and P2=PSIG, and T=minutes
        • Leakage = V x (P1-P2) x 1.25
          ————–
          T x 14.7
  3. Know your cost of compressed air so you can provide effectiveness of the leak fixing process.
  4. Find, Document and Fix the leaks. Start by fixing the worst offenders, fix the largest leaks. Document both the leaks found and the leaks fixed which can help illustrate problem areas or repeat offenders, which could indicate other problems within the system.
  5. Compare the baseline to your final results.
  6. Repeat. We know you didn’t want to hear this but it will be necessary to continue an efficient compressed air system in your plant.

EXAIR has a tool to assist you in finding these leaks throughout your facility, the Ultrasonic Leak Detector. Check one of our other Blogs here, to see how it works!

Leak Detector

 

If you’d like to discuss how to get the most out of your compressed air system – or our products – give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on FacebookTwitter: @EXAIR_JS

 

Does a 38 Day Simple ROI Sound Good? Use Engineered Compressed Air Blowoff Products!

After getting a baseline measurement of the air consumption in your facility and locating and fixing leaks in your system, it’s time to begin implementing some changes. Step 3 of the 6 Steps to Optimizing Your Compressed Air System covers upgrading your blowoff, cooling, and drying operations using engineered compressed air products.

sixsteps_3

This step can have the most impact when it comes to your bottom line. The energy costs associated with the generation of compressed air make it one of the most expensive utilities for any industrial environment. Because of this, we need to ensure that the places in your facility that are using compressed air are doing so efficiently.

EXAIR manufactures a variety of products that can help to ensure you’re using your compressed air in the best way possible. What it may seem simple, easy, and cheap to use something like an open-ended pipe or tube for blowoff, the fact of the matter is that the volume of air that these homemade solutions use quickly make them more expensive. Super Air Nozzles have been designed to entrain ambient air along with the supplied compressed air, allowing you to achieve a high force from the output of the nozzle while keeping compressed air usage to a minimum. In addition to saving air, they’ll also provide a significant reduction in overall sound level.

drilled pipe
homemade drilled pipe

Another product that can be used to increase the efficiency of your blowoff processes is the Super Air Knife. Available in lengths ranging from 3”-108” and in a variety of materials, the Super Air Knife is the ideal replacement for inefficient drilled pipes. Again, it may seem cheaper to just drill a few holes in a pipe whenever you need to cover a wide area but the volume of air consumed in addition to the incredibly high sound level will quickly drain your compressor. The Super Air Knife is also designed to entrain ambient air, at a rate of 40:1! Allowing you to take advantage of the free ambient air in addition to the supplied air.

Let’s compare the costs difference between a homemade drilled pipe and EXAIR’s Super Air Knife. The Super Air Knife has a precisely set air gap across the full length of the knife, allowing for an efficient and quiet laminar airstream. When compared to a drilled pipe, the air consumption is dramatically reduced as is the sound level. For example, let’s take an 18” section of drilled pipe, with 1/16” diameter holes spaced out every ½”. At 80 PSIG, each hole consumes 3.8 SCFM. With a total of 37 holes, this equates to a total of 140.6 SCFM.

3.8 SCFM x 37 = 140.6 SCFM

A Super Air Knife, operated at 80 PSIG with .002” stock shim installed will consume a total of 2.9 SCFM per inch of knife. An 18” SAK would then consume just 52.2 SCFM.

2.9 SCFM x 18 = 52.2 SCFM

140.6 SCFM – 52.2 SCFM = 88.4 SCFM saved 

Replacing an 18” drilled pipe with a Super Air Knife represents a total reduction in compressed air consumption of 63%! How much does this equate to in $$$? A reasonable average of cost to generate compressed air is about $0.25/ 1000 SCF. Let’s assume just a 40hr workweek:

88.4 SCFM x 60 mins x $0.25/1000 SCF = $1.33/hr

$1.33 x 40hr workweek = $53.20 USD

$53.20 x 52 weeks/year = $2,766.40 USD in yearly savings

The 2019 list price on a Model 110018 Super Air Knife is $397.00. By replacing the homemade solution with an 18” Super Air Knife, the return on investment is just over 38 working days of an 8-hr shift. If your plant runs multiple shifts, or works on weekends, it pays for itself even quicker.

Not only are these homemade solutions expensive to operate, they’re not safe either. Familiarize yourself with both OSHA 29 CFR 1910.95(a) and 29 CFR 1910.242(b) and you’ll learn just how expensive it can be if you were to be found using these devices during a random OSHA inspection. Make sure you’re utilizing the most expensive utility as efficiently and safely as possible. If you need help with determining which products are best suited for your application, give us a call. Our team of Application Engineers is ready to help!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Compressed Air Efficiency – How It Benefits Business

It is estimated that typically plants can waste up to 30 percent of their generated compressed air and that cost is substantial.  Considering the average cost to generate compressed air here in the Midwest is .25 cents per 1,000 Standard Cubic Feet, that translates into .075 cents for every .25 cents spent!  Compounded with the fact that energy costs have doubled in the last five years, it couldn’t be a better time to make your air compressor system more efficient.

efficiencylab

The following steps will help you save air and in turn save money.

  1. Measure the air consumption to find sources that use a lot of compressed air.

Knowing where you stand with your compressed air demand is important to be able to quantify the savings once you begin to implement a compressed air optimization program. Placing a value upon your compressed air consumption will also allow you to place a value on its costs and the savings you will reap once you start to reduce your consumption. (EXAIR’s Digital Flow Meter)

9093ZG-DG

  1. Find and fix the leaks in your compressed air system.

Not fixing your compressed air system leaks can cause your system pressure to fluctuate and affect your equipment negatively. It may cause you to run a larger compressor than necessary for your compressed air needs and raise your total costs. Or it could cause your cycle and run times to increase which leads to increased maintenance to the entire system. (EXAIR’s Ultrasonic Leak Detector)

uhd kk

  1. Upgrade your blow off, cooling and drying operations using engineered compressed air products.

Your ordinary nozzle with a through hole and a cross drilled hole can be an easy choice based upon price, but if you do not consider the operating cost you do not really know how much it is costing you. An Engineered Air Nozzle will pay for itself and lower operating costs quickly. Engineered Air Nozzles are the future of compressed air efficiency and are made to replace ordinary nozzles, homemade nozzles and open line blow offs. Engineered Nozzles reduce air consumption and noise levels; ordinary nozzles cannot compete. Engineered Nozzles maintain safety features and can qualify for an energy savings rebate from a local utility; ordinary nozzles fall short. Open blow off or homemade blow off applications typically violate OSHA safety standards; Engineered Nozzles do not.  (EXAIR’s Air Nozzles)

nozzlescascade2016cat29_559
EXAIR Nozzles
  1. Turn off the compressed air when it is not in use.

Automated solutions add solenoid valves and run them from your machine controls. If the machine is off, or the conveyor has stopped – close the solenoid valve and save the air.  And blow off applications can benefit from any space in between parts by turning the air off during the gaps with the aid of a sensor and solenoid. (EXAIR’s automated  Electronic Flow Control)

 

  1. Use intermediate storage of compressed air near the point of use.

Also known as secondary receivers, intermediate air storage is especially effective when a system has shifting demands or large volume use in a specific area. Intermediate storage is the buffer between a large demand event and the output of your compressor. The buffer created by intermediate storage (secondary receiver) prevents pressure fluctuations which may impact other end use operations and affect your end product quality. (EXAIR’s Receiver Tanks)

  1. Control the air pressure at the point of use to minimize air consumption.

This is a very simple and easy process, all it requires is a pressure regulator. Installing a pressure regulator at all of your point of use applications will allow you to lower the pressure of these applications to the lowest pressure possible for success. Lowering the pressure of the application also lowers the air consumption. And it naturally follows that lower air consumption equals energy savings. (EXAIR’s Pressure Regulators)

By increasing your awareness of the health of your air compressor system and implementing a PM program you can significantly reduce your costs from wasted energy and avoid costly down time from an out of service air compressor.

If you would like to discuss improving your compressed air efficiency or any of EXAIR’s engineered solutions, I would enjoy hearing from you…give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

 

 

6 Steps to Optimizing Your Compressed Air System

If you’re a follower of the EXAIR Blog, you’re probably well aware that compressed air is the most expensive utility in an industrial environment. The average cost to generate 1000 Standard Cubic Feet of compressed air is $0.25. If you’re familiar with how much air you use on a daily basis, you’ll understand just how quickly that adds up.

To make matters worse, many compressed air systems waste significant amounts of compressed air just through leaks. According to the Compressed Air Challenge, a typical plant that has not been well maintained will likely have a leak rate of approximately 20%!! Good luck explaining to your finance department that you’re carelessly wasting 20% of the most expensive utility.

SBMart_pipe_800x

6 Steps from Catalog

The best way to save energy associated with the costs of generating compressed air is pretty straightforward and simple: TURN IT OFF! Placing valves throughout your distribution system allows you to isolate areas of the facility that may not need a supply of compressed air continuously.

Even a well-maintained system is going to have a leakage rate around 10%, it’s darn near impossible to absolutely eliminate ALL leaks. By having a valve that allows you to shut off the compressed air supply to isolated areas, you’re able to cut down on the potential places for leaks to occur.

You’re likely not running each and every machine continuously all day long, if that’s the case why not shut off the air supply to those that aren’t running? When operators go to lunch or take a break, have them turn off the valves to prevent any wasted air. The fact of the matter is that taking this one simple step can truly represent significant savings when done diligently.

You wouldn’t leave your house with all the lights and TV on, so why leave your compressed air system running when it’s not in use? Even if everyone’s left for the day, leaks in the system will cause the compressor to keep running to maintain system pressure.

Taking things one step further, EXAIR’s Electronic Flow Control (EFC) utilizes a solenoid controlled by photoelectric sensor that has the ability to shut off the compressed air when no part is present. If you’re blowing off parts that are traveling along a conveyor with space in between them, there’s no need to continuously blow air in between those parts. The EFC is able to be programmed to truly maximize your compressed air savings. The EFC is available in a wide range of different capacities, with models from 40-350 SCFM available from stock and systems controlling two solenoid valves for larger flowrates available as well.

newEFC2_559

It’s no different than turning off your house lights when you leave for work each day. Don’t get caught thinking compressed air is inexpensive “because air is free”. The costs to generate compressed air are no joke. Let’s all do our part to reduce energy consumption by shutting off compressed air when it isn’t necessary!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD