Minimize Exposure to Hazards Using the Hierarchy of Controls

The CDC (Center for Disease Control) published a useful guide called “Hierarchy of Controls” that details (5) different types of control methods for exposure to occupational hazards while showing the relative effectiveness of each method.

HierarchyControls
CDC Hierarchy of Controls

The least effective methods are Administrative Controls and PPE. Administrative Controls involve making changes to the way people perform the work and promoting safe practices through training. The training could be related to correct operating procedures, keeping the workplace clean, emergency response to incidents, and personal hygiene practices, such as proper hand washing after handling hazardous materials. PPE (Personal Protective Equipment) is the least effective method because the equipment (ear plugs, gloves, respirators, etc.) can become damaged, may be uncomfortable and not used, or used incorrectly.

In the middle range of effectiveness is Engineering Controls. These controls are implemented by design changes to the equipment or process to reduce or eliminate the hazard. Good engineering controls can be very effective in protecting people regardless of the the actions and behaviors of the workers. While higher in initial cost than Administrative controls or PPE, typically operating costs are lower, and a cost saving may be realized in the long run.

The final two, Elimination and Substitution are the most effective but can be the most difficult to integrate into an existing process. If the process is still in the design phase, it may be easier and less expensive to eliminate or substitute the hazard. Elimination of the hazard would be the ultimate and most effective method, either by removing the hazard altogether, or changing the work process to the hazardous task is no longer performed.

EXAIR can help your company follow the Hierarchy of Controls, and eliminate, or reduce the hazards of compressed air usage.

Engineers can eliminate loud and unsafe pressure nozzles with designs that utilize quiet and pressure safe engineered air products such as Air Nozzles, Air Knives and Air Amplifiers. Also, unsafe existing products such as air guns, can be substituted with EXAIR engineered solutions that meet the OSHA standards 29 CFR 1910.242(b) and 29 CFR 1910.95(a).

Nozzles

In summary, Elimination and Substitution are the most effective methods and should be used whenever possible to reduce or eliminate the hazard and keep people safe in the workplace.

If you have questions about the Hierarchy of Controls and safe compressed air usage from any of the 15 different EXAIR Intelligent Compressed Air® Product lines, feel free to contact EXAIR and myself or any of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Reduce Sound Level in your Factory, Improve Worker Safety and Comfort

Checking the sound level in your processes is an important aspect of ensuring a safe working environment for your employees. Loud noises and the exposure time can lead to significant health concerns. Permanent hearing loss, increased stress levels due to the uncomfortable work environment, and potential injury due to lack of concentration or inability to hear the surroundings are all examples of some risks associated with a noisy environment.

The Occupational Safety and Health Administration, known by most simply as OSHA, introduced Standard 29 CFR 1910.95(a) as a means of protecting operators from injury associated with high noise levels. The chart below indicates maximum allowable exposure time based on different noise levels. At just 90 dBA, an operator can operate safely for 8 hours. Open end pipe blowoffs and some air guns fitted with cross drilled relief holes will often result in noise levels in excess of 100 dBA. At 110 dBA, permanent hearing loss can be experienced in just 30 minutes!

OSHA Chart

The first step to lowering your sound level is to take a baseline reading of your various processes and devices that are causing the noise. EXAIR’s Sound Level Meter, Model 9104, is an easy to use instrument that provides a digital readout of the sound level. They come with an NIST traceable calibration certificate and will allow you to determine what processes and areas are causing the most trouble.

SoundMeter_new_nist225

From there, EXAIR has a wide range of Intelligent Compressed Air Products® that are designed to reduce compressed air consumption as well as sound levels. For noisy blowoffs where you’re currently using an open-ended pipe or a loud cross-drilled nozzle, EXAIR’s Super Air Nozzles are the ideal solution. Not only will they pay for themselves over time due to compressed air savings, but your operators will thank you when they’re able to hear later on in life!!

Drilled pipe is another common culprit of high noise levels. Rather than purchasing an engineered solution, the idea is that a simple drilled pipe is just as effective right? Not at all!! Not only does a drilled pipe produce exceptionally high sound levels, but the amount of compressed air used is also very inefficient. EXAIR’s Super Air Knife is available in lengths ranging from 3”-108” and has a sound level of just 69 dBA at 80 PSIG. At this sound level, operators won’t even require hearing protection at all!

SAK vs drilled pipe
EXAIR’s Super Air Knife is the ideal solution for replacing noisy, inefficient drilled pipe

With all of these products available in stock, EXAIR has the tools you need to reduce sound level in your processes. If you’d like to talk to an Application Engineer about any applications that you feel could benefit from a sound reduction, give us a call.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Video Blog: EXAIR’s Soft Grip Super Air Scraper

The video below showcases a new EXAIR product, the Soft Grip Super Air Scraper. This combines the comfort of a Soft Grip Safety Air Gun with the powerful air stream of the 2″ Flat Super Air Nozzle and adds the scraping ability of a handheld scraper all in one convenient package.

If you would like to discuss your application, please contact us.

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

 

Reduce Sound Level with EXAIR’s Flat Super Air Nozzles

2san_blowaway
EXAIR’s Flat Super Air Nozzles have been blowing away the competition since 2003.

The patented design of EXAIR’s 1” and 2” Flat Super Air Nozzles make them a highly efficient option when seeking a powerful, flat airflow. A precise air gap across the width of the nozzle provides a forceful stream of high velocity, laminar airflow without consuming high amounts of compressed air and also resulting in a greatly reduced sound level compared to some of the alternative flat nozzles available in the market.

EXAIR’s Flat Super Air Nozzles are safe, reliable, and efficient. Here on the EXAIR Blog we frequently discuss dead-end pressure as explained in OSHA Standard 1910.242(b). This directive states that the when compressed air is used for cleaning purposes, the dead-ended pressure must not exceed 30 psig. When pressures greater than this occur, there is potential for an air embolism.

EXAIR’s Flat Super Air Nozzles cannot be dead-ended, which allows us to operate at pressures well above the 30 psig limit. Some competition markets their nozzles as “Extremely Quiet”, but a deeper look into their performance specifications shows that the published sound level reading was taken at a pressure of 29 psig. They must use a pressure of 29 psig because the nozzles are not OSHA compliant at pressures exceeding 30 psig. For the same competitive nozzle, there is no path for air to escape if the nozzle were to be dead-ended or pressed up against the skin. At 29 psig, the nozzle simply isn’t very effective as it doesn’t provide enough force for most applications. This very same nozzle, when operated at 80 psig, actually has a sound level of 85 dBA.

2inNozzlehand_800x

EXAIR’s Model 1122 delivers more force, more efficiently, and at a sound level of just 77 dBA at 80 psig. Remember, sound levels are expressed in dBA as a logarithmic function. This represents a decrease in sound level by 60%! If you’re looking for a means of reducing sound level in your plant, EXAIR’s 1” and 2” Flat Super Air Nozzles are just what you need.

In addition to being very quiet EXAIR’s flat super air nozzles integrate a shim used to adjust the air gap, which changes the maximum airflow and force. Thicker shims will produce more force and flow, while a thinner shim would do just the opposite.Some applications require more force and some require less, which is not always achieved through simple pressure adjustments so the shims provide the flexibility needed for success.

They’re on the shelf in stock. With same day shipping on orders placed by 3:00 ET and an Unconditional 30-Day Guarantee, there’s no excuse to not give them a try!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Air Entrainment & EXAIR’s Intelligent Compressed Air Products

Air entrainment is a term that we bring up quite often here at EXAIR. It’s this concept that allows many of our products to dramatically reduce compressed air consumption. The energy costs associated with producing compressed air make it an expensive utility for manufacturers. Utilizing engineered compressed air products that will entrain ambient air from the environment allow you to reduce the compressed air consumption without sacrificing force or flow.

Entrainment
EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

Products such as the Super Air Knife, Super Air Nozzle, Air Amplifier, and Super Air Wipe all take advantage of “free” air that is entrained into the primary supplied airstream. This air entrainment occurs due to what is known as the Coanda effect. Named after renowned Romanian physicist, Henri Coanda, the Coanda effect is used in the design of airplane wings to produce lift. As air comes across the convex surface on the top, it slows down creating a higher pressure on the underside of the wing. This creates lift and is what allows an airplane to fly.

nozzle_anim_twit800x320
EXAIR Super Air Nozzle entrainment

This is also the same principle which is allowing us to entrain ambient air. As the compressed air is ejected through a small orifice, a low-pressure area is created that draws in additional air. Our products are engineered to maximize this entrained air, creating greater force and flow without additional compressed air. Super Air Amplifiers and Super Air Nozzles are capable of up to a 25:1 air entrainment ratio, with just 1 part being the supplied air and up to 25 times entrained air for free!! The greatest air entrainment is achieved with the Super Air Knife at an incredible ratio of 40:1!

This air entrainment principle allows you to utilize any of these products efficiently for a wide variety of cooling, drying, cleaning, or general blowoff applications. In addition to reducing your compressed air consumption, replacing inefficient devices with engineered products will also dramatically lower your sound level in the plant. Sound level in some applications can even be reduced down to a point that would eliminate the need for hearing protection with the OSHA maximum allowable exposure limits set at 90 dBA for an 8-hour shift.

If you have inefficient blowoff devices in your facility, give us a call. An Application Engineer will be happy to help you select a product that will “quietly” reduce your compressed air consumption!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Custom Products from EXAIR Meet Your Specifications

Since EXAIR manufactures and distributes our own products, we have the flexibility to provide custom products, special processing, unique packaging and more. If your process or specifications are something special, let us know and we will do our best to accommodate any special considerations you might need. Following is one example for a customer who purchases air guns.

Several months ago I received a call from a company that was looking for a specialized air gun.  This company was involved in the servicing of highly specialized measuring equipment and needed a safe, quiet, & efficient air gun that also had to be completely oil/contamination free.   This was to ensure no contamination would result from using the air gun on any of their equipment.  Ultimately this meant that every air gun component needed to be washed,  rinsed and dried to ensure there was no residual oils or dirt from manufacturing left on or in any component of the gun.

Our customer decided on the highly versatile Vari-Blast Compact Safety Air Gun with the award-winning Nano Super Air Nozzle, specifically models 1698SS and the 1698SS-6.  EXAIR presented a written process to the customer. This process explained how we would identify and manufacture their specific air gun in order to assure the customer that would receive a consistently clean air gun, every time.

nano nozzle
EXAIR’s Award Winning Nano Super Air Nozzle Performance Characteristics

nano air pattern
1110SS Specifications

img_7897
1698SS

img_7898a
1698SS-6

Additionally the customer had specifications requiring special packaging as they were going to ship these globally to their service team members.  To ensure safe arrival no matter where they are shipped,  EXAIR provides special handling and packaging which exceeds their requirements.

Also, when you are looking for expert advice on safe, quiet and efficient point of use compressed air products give us a call.  We would enjoy hearing from you!

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Calculating Static Friction To Eject Parts with Air

2″ Flat Super Air Nozzle

In today’s fast-paced world, companies are always looking for ways to do things faster, cheaper, more efficiently without sacrificing safety.

A cereal company had a high-speed system to check the quality of each box of cereal.  When a box did not meet the quality criteria for visual and/or weight, the box would be rejected.  The rejection system that they used was a quick blast of compressed air to remove the box from the conveyor line into a non-conforming bin.  For their first attempt, they tried to use a ¼” copper tube with a solenoid valve attached to a reservoir tank.  When a “bad” box was detected, the solenoid would be triggered, and compressed air would “shoot” the box off the rubber conveyor belt.  The ¼” copper tube can be an inexpensive, common, and easy-to-use device; but they found that the copper tube was very loud (above OSHA limits for noise exposure) and not very effective.  As a note, this company had a safety committee, and they wanted to keep all blowing devices below 80 dBA in this department.  The ¼” copper tube was around 100 dBA.  So, they contacted EXAIR to get our expertise on this type of application.

The cereal company gave me some additional details of the operation.  The box weighed 26 oz. (740 grams) with a dimension of 7.5″  wide by  11″ tall by  2 3/4″ deep (19 cm X 28 cm X 7 cm respectively).  The issue with the ¼” copper tube was the small target area compared to the area of the box.  With any slight variation in the timing sequence, the force would miss the center of mass of the box.  The box could then spin and remain on the conveyor belt.  This would cause stoppage and disruption in the system.  They asked if EXAIR had a better way to remove the defective boxes.

I recommended a model 1122, 2” Flat Super Air Nozzle.  The reason for this style of nozzle was for a variety of reasons.  First, we needed a larger area to “hit” the box.  This Flat Super Air Nozzle has a width of 2” versus the ¼” copper tube.  This increased the target area by 8 times.  So, any small variations in time, we could still hit the center of mass and remove the box.  The second reason was the force rating.  The model 1122 has a force of 22 oz. (624 grams) at 80 PSIG (5.5 bar).  This is slightly under the 26 oz. (740 grams) weight of the cereal box, but we are just sliding the box and not lifting it.  If we can overcome the static friction, then the box can be easily removed.  With Equation 1, we can calculate the required force.

Equation 1:

Fs = ms * W

Fs – Static Force (grams)

m– Static Friction

W – Weight (grams)

From the “Engineering Toolbox”, the static friction between rubber and cardboard is between 0.5 to 0.8.  If I take the worse case condition, I can calculate the static force between the belt and cereal box using Equation 1:

Fs = 0.8 * 740 grams

Fs = 592 grams

The model 1122 has a force of 22 oz. (624 grams), so plenty enough force to move the box from the rubber conveyor belt.

The third reason for this nozzle is the noise level.  The noise level of the model 1122 is 77 dBA, well below the safety requirement for this company.  Noise levels are very important in industries to protect operators from hearing loss, and the model 1122 was able to easily meet that requirement.  I added an additional reason for recommending the 2” Flat Super Air Nozzle; compressed air savings.  Companies sometimes overlook the cost when using compressed air for blow-off devices.  In this comparison, the ¼” copper tube will use 33 SCFM (934 SLPM) at 80 PSIG (5.5 bar) while the model 1122 will only use 21.8 SCFM (622 SLPM).  This is a 33% reduction in compressed air; saving them money.

At the intro, I mentioned that companies are looking to do things faster, cheaper, more effective without sacrificing safety.  For this company, we were able to increase production rates by removing every cereal box from the conveyor belt.  We also saved them money by reducing the compressed air requirement as well as keeping it safe by reducing noise.

If you have an application that needs products to be moved by air, you can contact an Application Engineer at EXAIR to help you with a solution.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb