Henri Coanda: June 7, 1886 – November 25, 1972

Henri Coanda was a Romanian aeronautical engineer best known for his work on the fluid dynamic principle with his namesake, the Coanda effect. Before this, Henri patented what he labeled as a jet engine.

Jet Engine 1
Jet Engine

Henri’s patent (French patent No. 416,54, dated October 22, 1910) gives more information into how he envisioned the motor working. When air entered the front, it passed through different cavities that caused the air stream to first contract and then expand. In Henri’s opinion this contraction and expansion converted the air’s kinetic energy into potential energy.  The air ultimately was channeled to a diffuser where it was discharged.

Henri stated that the efficiency of this engine could be improved by heating the air in the cavities, Henri’s logic was that this would increase the pressure of the air passing through.

What is obviously lacking in the patent (including identical ones taken out in England and the United States) is any mention of injecting fuel, which in a true jet engine would combust with the incoming air. Judging only by Henri’s patent, it was little more than a large ducted fan and it could not have flown.  Throughout Henri’s career he changed his story many times on whether this plane actually flew or not.

Not to cast too much shade on Henri’s accomplishments he did discover the Coanda effect.  The Coanda effect states that a fluid will adhere to the surface of a curved shape that it is flowing over.  One might think that a stream of fluid would continue in a straight line as it flows over a surface, however the opposite is true.  A moving stream of fluid will follow the curvature of the surface it is flowing over and not continue in a straight line. This effect is what causes an airplane wing to produce lift, and enhance lift when the ailerons are extended while at lower air speeds such as occurs during takeoff and landing.

plane-1043635_1920
Ailerons positioned for cruising speed

EXAIR uses the Coanda effect to offer you highly engineered, intelligent and very efficient compressed air products.  Our designs take a small amount of compressed air and actually entrain the surrounding ambient air with the high velocity exiting compressed air stream to amplify the volume of air hitting a surface.

nozzle_anim_twit800x320
Surrounding Air Captured (Entrained) In Exiting Compressed Air Stream
How Air Knife Works
1). Compressed Air Inlet, 2). Compressed Air Exiting EXAIR Super Air Knife 3). Surrounding Air Being Entrained With Exiting Compressed Air Stream
Super Air Amplifier
EXAIR Super Air Amplifier Entraiment

When you are looking for expert advice on safe, quiet and efficient point of use compressed air products give us a call.   We would enjoy hearing from you.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Back Blow Nozzles Clean Inside Metal Tubes

A manufacturing plant EXAIR worked with made cast aluminum tubes for the automotive industry.  After the parts were cast, a machining operation would clean the ends.  This left coolant and metal shavings inside the tube.  Before going to assembly, they had to clean the part.  They created a two-tube fixture (reference picture above) to fit the 25mm tubes in place.

Two home-made nozzles were used to fit inside the tubes to blow compressed air.  The nozzles were attached to the ends of two 17mm pipes which supplied the compressed air.  A cylinder was used to push the nozzles from the top of the aluminum tube to the bottom then back up again.  The liquid emulsion and debris would be pushed downward into a collection drum.  When they started operating their system, the inside of the tubes still had contamination inside.  They wanted to improve their process, so they looked for an expert in nozzle designs, EXAIR.

Back Blow Air Nozzle Family

EXAIR designed and manufactures a nozzle for just this type of operation, the Back Blow Air Nozzles.  We offer three different sizes to fit inside a wide variety of diameters from ¼” (6.3mm) to 16” (406mm).  They are designed to clean tubing, pipes, hoses, and channels.  The 360o rear airflow pattern can “wipe” the entire internal surface from coolant, chips, and debris.  For the application above, I recommended the model 1006SS Back Blow Air Nozzle.  This 316SS robust design would fit inside the tubes above.  The range for this Back Blow Air Nozzle is from 7/8” (22mm) to 4” (102mm) diameters.  The customer did have to modify the function of the equipment by placing the cylinder and the rods under the aluminum tubes.  The reverse airflow would still push the contamination into the collection drum that was placed underneath the tubes.

After installing the model 1006SS onto the rods, the cleaning operation became more efficient.  Not only was the entire internal diameter getting clean, they were able to turn off the compressed air until they reached the top of the tube.  With the model 1006SS, they only needed one pass to clean.  This cut the air consumption in half, saving them much money by using less compressed air.  In addition, they were able to speed up their operation by 20%.  Cleaner tubes, less time, cost savings; they were happy that they contacted EXAIR for our expertise.

Reverse Air Flow

If you need to clean the inside of tubes, hoses, pipes, etc., EXAIR has the perfect nozzle for you, the Back Blow Air Nozzles.  EXAIR can also offer these nozzles on our VariBlast, Soft Grip and Heavy Duty Air Guns for manual operations.  They come with Chip Shields and extensions that can reach as far as 72” (1829mm).  Or like the customer above, automate the system to get a great non-contact cleaning.

If you require any more details, you can contact an Application Engineer at EXAIR.  We will be happy to help.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Video Blog: How To Calculate Air Consumption At A Pressure Other Than Published Values

The below video shows how to calculate the air consumption when operating at any pressure.

If you want to discuss efficient compressed air use or any of EXAIR’s engineered compressed air products, give us a call or email.  We would enjoy hearing from you!

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

 

How to Calculate SCFM (Volume) When Operating at Any Pressure

If you need to operate at a different pressure because you require less or more force or simply operate at a different line pressure, this formula will allow you to determine the volume of air being consumed by any device.

Volume Formula

Using the EXAIR 1100 Super Air Nozzle as our example:

1100

Lets first consider the volume of the 1100 Super Air Nozzle at a higher than published pressure.  As shown in the formula and calculations it is simply the ratio of gauge pressure + atmospheric divided by the published pressure + atmospheric and then multiply the dividend by the published volume.  So as we do the math we solve for 17.69 SCFM @ 105 PSIG from a device that was  shown consume 14 SCFM @ 80 PSIG.

higher

Now lets consider the volume at a lower than published pressure.  As shown it is simply the ratio of gauge pressure + atmospheric divided by the published pressure + atmospheric and then multiply the dividend by the published volume.  So as we do the math we solve for 11.04 SCFM @ 60 PSIG from a device that was shown to consume 14 SCFM @ 80 PSIG.

lower

When you are looking for expert advice on safe, quiet and efficient point of use compressed air products give us a call.  Experience the EXAIR difference first hand and receive the great customer service, products and attention you deserve!  We would enjoy hearing from you.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Experience The EXAIR Difference For Yourself!

The other day I received a call from the Corporate Director of a manufacturing company with multiple locations across the country.  He had grown frustrated with the service and quality he was receiving from his current Air Gun & Nozzle supplier.  He explained that he was unable to buy the individual components to make repairs to the air guns and described the overall quality as “disposable”.

I asked him for model air gun he had been purchasing so that I could make an accurate comparison and recommendation for the equivalent or better EXAIR offering.  As I researched this competitive air gun I was surprised to find out that the specifications were vague at best.  What I mean by that is EXAIR clearly publishes air consumption @ 80 PSI, force which is specified @ 12″ from the nozzle and the sound level in dBA @ 3′ from the nozzle.

I recommended the EXAIR 1699-24 (1699-12 pictured) which is the VariBlast Compact Safety Air Gun, 24″ Extension Pipe & the 1102 Mini Super Air Nozzle.

Final Image
1699-12

The 1699-24 (supplied with the 1102 Mini Super Air Nozzle) specifications are: 10 SCFM @ 80 PSI compressed air consumption, 9 ounces force @ 12″ from nozzle and 71 dBA @ 3′ from the nozzle.  The 1102 1/8 FNPT is available in Zinc Aluminum, 316 SS or PEEK plastic.

1102 Mini Super Air Nozzle

The customer reported an average noise reduction of over 15 dBA which looks considerable, however it is a greater gain than the number would indicate. An increase of 10 dB is required before sound is perceived to be twice as loud, therefore EXAIR lowered the perceived sound by over 150%!

While this customer did not add the optional EXAIR Chip Shield you certainly can.  Simply add -CS to the end of any Safety Air Gun part number.  The part number for the featured VariBlast Safety Air Gun would become 1699-24-CS.  Chip Shields are made from durable poly-carbonate that protect operators from flying debris often associated with blowing chips off machined parts.  Chip Shields are also great for keeping coolant from spreading everywhere during drying operations.  They are available for the VariBlast Safety Air Gun, Soft Grip Safety Air Gun and Heavy Duty Safety Air Gun.  Also Chip Shields can be used on Safety Air Guns with or without the aluminum extension!

When you are looking for OSHA safe, quiet and efficient point of use compressed air products give us a call.  Experience the EXAIR difference first hand and receive the great customer service, products and attention you deserve!  We would enjoy hearing from you.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

 

OSHA 29 CFR 1910.15(a) – Occupational Noise Exposure Limits

Hearing loss due to high noise levels is a common problem in many industrial facilities. Without the use of proper PPE, hearing loss can occur quickly. This is a serious concern as hearing loss is permanent and once the damage is done there’s no way to reverse it. Due to this risk, OSHA strictly enforces standard 29 CFR-1910.95(a).

This directive discusses the effects of noise and limits exposure based on the dBA. The table below indicates the maximum allowable exposure time to different noise levels. Sound levels that exceed these levels should first be addressed by proper engineering controls such as isolating the source of the sound from personnel or replacing the cause of the sound with something like an engineered compressed air nozzle. When such controls aren’t feasible, proper PPE must be worn to protect the operator.

OSHA Chart

Hearing loss can occur in as little as 30 minutes when exposed to sound levels 110 dBA or greater. Operators have a tendency not to use PPE as directed, if an OSHA inspector comes to your facility and notices that the sound levels exceed the maximum allowable level without protection hefty fines will be soon to follow. In this example from the United States Department of Labor, a company was fined a total of $143,000 for failing to protect their employees.

SoundMeter_new_nist225
Model 9104 Digital Sound Level Meter

In order to identify the places or processes in your facility that are causing the problems, you’ll need a tool to measure the sound level. EXAIR’s easy to use Digital Sound Level Meter allows you to measure and monitor the sound level pressure in a wide variety of industrial environments. The source of the loud noise can then be identified and isolated so that corrective action can be taken. For compressed air related noise, EXAIR manufactures a wide variety of engineered compressed air products that can reduce the sound level dramatically. In many cases, EXAIR products are capable of reducing noise levels by as much as 10 dBA. Since the dBA scale is logarithmic, this equates to cutting the sound level in half!

sound-level-comparison
Drilled pipes and open ended tubes are the common culprit for excessive noise levels. Replacing them with an engineered solution often eliminates the need for hearing protection.

If there’s processes within your facility that are above these limits and you’d like to eliminate relying on proper PPE, give an Application Engineer a call. We’ll help walk you through the selection process and make sure that when the OSHA inspector comes knocking you’re prepared!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Product Overview: Back Blow Safety Air Guns

BackBlowNozzle

EXAIR’s highly engineered and efficient Back Blow Nozzle’s provide a powerful 360° airflow through an array of holes to remove coolant, chips or debris.  Back Blow Nozzle’s are the perfect solution for cleaning out the inside of any pipe, tube, hose or channels.

They are available in three different sizes:

M4 X .5 BB Nozzle

.25 NPT BB

1 NPT BB

The Back Blow Nozzle’s are also offered on the VariBlast, Soft GripHeavy Duty, and Super Blast Safety Air Guns.  They can be configured with different length extensions (up to 72″) to make nearly any cleaning job within reach!   We recommend the optional Chip Shield since the air stream is carrying the debris back towards the operator.

1604SS-6-CS-lftangle
Variblast Safety Air Gun 1604SS-6-CS, Includes 1004SS Back Blow Nozzle With 6″ Extension and Chip Shield. The 1604SS Is Offered In 6″, 12″, 24″ and 36″ Lengths.
1204SS-6-CS
Soft Grip Safety Air Gun 1204SS-6-CS, Includes 1004SS Back Blow Nozzle With 6″ Extension and Chip Shield.  The 1204SS Is Offered In 6″, 12″, 24″ and 36″ Lengths.
1206SS-6-CS559
Soft Grip Safety Air Gun 1206SS-6-CS, Includes 1006SS Back Blow Nozzle With 6″ Extension and Chip Shield.  The 1206SS Is Offered In 12″, 18″, 24″, 36″, 48″, 60″ & 72″ Lengths.
1306SS-6-CS
Heavy Duty Safety Air Gun 1306SS-6-CS, Includes 1006SS Back Blow Nozzle With 6″ Extension and Chip Shield.  The 1306SS Is Offered In 12″, 18″, 24″, 36″, 48″, 60″ & 72″ Lengths.
1219ss800
Super Blast Safety Air Gun 1219SS, Includes 1008SS Back Blow Nozzle With 1′ Extension.  The 1219SS Is Offered In 1′, 3′ & 6′ Lengths.

Take it from me EXAIR’s Safety Air Guns fitted with a  Back Blow Nozzles are a must have for any operation that needs to remove debris from pipes, tubes or hose!

If you would like to discuss Safety Air Guns with Back Blow Nozzles or any of our quiet and efficient compressed air devices, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook