Atto Air Nozzle Saves Dental Crown Manufacturer

This blog may get a little uncomfortable for some of us. It revolves around a subject that can strike fear into the hearts of many and just the thought of it can make sounds or smells come back from memory. For me, the sound of the high-pitched drill is precisely what comes to mind when I think of the Dentist….

That’s right, today we are talking about the Dentist. Well, more so a vendor for dentists that still deals with teeth. This manufacturer came to me looking for a way to improve their compressed air consumption on a tooling blowoff for the machining of dental crowns. They used custom-made blowoffs to try and remove the residual material on their cutting tools before contacting a new part and during the machining of a crown. The customer didn’t have a ton of room, and they did not want to redesign the entire blowoff. The blowoff was essentially an open pipe that had a .085″ diameter. Each machine station had three blowoffs, there are 20 machining stations per production line, with five total production lines. So any savings will add up quickly over 300 blowoff points.

BEFORE: A .085″ diameter open blowoff at each spindle to remove debris.

They were able to cut back and thread the end of the open blowoff for one of our 1108SS Atto Super Air Nozzles. The open blowoff was consuming 6 SCFM when operating at 80 psig inlet pressure for each blowoff point. For a single machining center that equates to 18 SCFM per center. 18 SCFM times 20 machining centers equals 360 SCFM of consumption per production line. Implementing the 1108SS reduced the consumption to 2.5 SCFM @ 80 psig per nozzle and gave a more defined blowoff pattern. 2.5 SCFM times 3 nozzles per center equates to 7.5 SCFM. 7.5 SCFM times 20 machining centers per production line totals 165 SCFM per production line. 360 SCFM minus 165 SCFM equates to 195 SCFM of compressed air savings by installing the further engineered solution.

AFTER: Three 1108SS Atto Super Air Nozzles provide adequate blowoff of debris.

Per nozzle, they can save up 72 cents per twelve-hour shift. While this does not seem like much, multiply that across 300 nozzles installed. You end up with $216.00 saved per twelve-hour shift. Some other breakdowns are shown below.

If you would like to discuss just how much a “little” open pipe blowoff is costing you, contact an Application Engineer today!

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Rebates Rewarded for Energy Efficiency & How to Get Them

The patented design of EXAIR’s 1” and 2” Flat Super Air Nozzles makes them a highly efficient option when seeking a powerful, flat airflow. A precise air gap across the width of the nozzle provides a forceful stream of high velocity, laminar airflow without consuming high amounts of compressed air and also resulting in a greatly reduced sound level compared to some of the alternative flat nozzles available in the market.

Did you know that upgrading to an efficient engineered air nozzle, such as the 1” or 2” Flat Super Air Nozzle, can make you eligible for an incentive from your energy provider? Similar to other energy-saving programs for upgrading to LED light bulbs or high-efficiency HVAC systems, these are made available to you as an incentive to start using more energy efficient products.

The energy costs associated with the generation of compressed air, often referred to in industry as a 4th utility, can make it expensive. These programs are offered to encourage you to use engineered products that are more energy efficient due to the reduction in compressed air consumption. Essentially, they’re offering you free money to implement a solution that will also save you money. It almost sounds too good to be true!! But these products, after implementation and receiving the incentive, will continue to save you money year after year.

The US Department of Energy, in conjunction with the NC Clean Energy Technology Center, provides a website that allows you to search the various programs available to you in your state. The DSIRE® website allows you to select your state, then select your energy provider to determine what programs are offered.

In Southwest Ohio, Duke Energy provides an incentive that offers $40 USD each per engineered air nozzle that is installed. When replacing open pipe or tube, these nozzles generally pay for themselves relatively quickly. But, when combined with a $40 USD rebate, that return on investment happens even quicker!!!

Don’t leave free money on the table. If you’re using open pipe or tube, or inefficient plastic flat nozzles, replace them with an engineered air nozzle from EXAIR. If you need help determining what rebate programs are available to you in your area, we’re also here to help. Contact an EXAIR Application Engineer today!

Tyler Daniel, CCASS

Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

EXAIR Compliance with OSHA 1910.242(b)

OSHA Standard 1910.242(b) discusses the use of compressed air for cleaning and blowoff. It states that the use of compressed air for cleaning purposes is prohibited if the dead-ended pressure exceeds 30 psig. This phrase means the downstream pressure of the air nozzle or gun, used for cleaning purposes, will remain at a pressure level below 30 psig for all static conditions. In the event that dead ending occurs, the static pressure at the main orifice shall not exceed 30 psi. If it does exceed this pressure, there is a very high potential for it to create an air embolism. An air embolism, left untreated, can quickly impede the flow of blood throughout the body. This can lead to stroke, heart attack, and sometimes death.

So making sure you are in compliance with 1910.242(b) is truly a life and death situation. Most people believe that lowering the pressure to the blow off device is the only method to keep their operators safe from an air embolism. However this can become a problem when you really need the force of greater than 30 PSIG to complete your operation. We at EXAIR want to give you the flexibility to run at any pressure with out the risk of building that 30 PSI of dead-end pressure! We do this with our line of Intelligent Compressed Air® nozzles! All of EXAIR’s Air Nozzles are designed so that the flow cannot be dead-ended. The fins on the Super Air Nozzles are not only useful in amplifying the force by drawing in ambient air, but they also prevent an operator from completely obstructing the airflow.

Another great example of this is our 2″ Flat super air nozzle. The design not only allows the nozzle to amplify the air flow in the blast of air, the over hang will not let the dead end pressure build as it can escape around the edges and bottom!

2″ Flat Super Air Nozzle

If you’ve got questions about compressed air safety or have an existing blowoff in place that does not adhere to this OSHA directive, give us a call. We’ll be sure to recommend a solution that will keep your operators and wallets safe!

Jordan Shouse
Application Engineer

Send me an Email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Compressed Air Safety

At EXAIR, we have a statement, “Safety is everyone’s responsibility”.  And as a corporation, EXAIR builds our name around this by manufacturing safe and protective compressed air products.  In the United States, we have an organization called Occupational Safety and Health Administration, OSHA, that enforces governmental directives for safe and healthy working environments.  They do training, outreach programs, and educational assistance for manufacturing plants.  They can also enforce these directives with heavy fines for violations.  With compressed air, the two most common violations are air guns and blow-off devices are described in 29CFR 1910.242(b) for dead-end pressure/chip shielding and 29CFR 1910.95(a) for maximum allowable noise exposure.

Here is an example of a nozzle that is dangerous.  As you can see, there is only one opening where the air can pass through from the nozzle.  Other similar types of blow-off devices that would fall into this same group would include copper tube, extensions, and open pipes.

Unsafe Nozzle

They are dangerous as the compressed air cannot escape if it is blocked with your body or skin.  If operated above 30 PSIG (2 bar), these nozzles could penetrate the skin and create an air embolism within the body which can cause bodily harm or death.  This is a hazard which can be avoided by using EXAIR Super Air Nozzles and Safety Air Guns.  The nozzles are designed with fins which allows the air to escape and not be blocked by your skin.  So, you can use the EXAIR Super Air Nozzles safely even above 30 PSIG (2 bar).

Unsafe Air Gun

To counteract the dead-end pressure violation, some nozzle manufacturers create a hole through the side of the nozzle (Reference photo above).  This will allow for the compressed air to escape, but now the issue is noise level.  With an “open” hole in the nozzle, the compressed air is very turbulent and very loud.  The National Institute for Occupational Safety and Health, NIOSH, states that 70% to 80% of all hearing loss within a manufacturing plant is caused by compressed air.  OSHA created a chart to show the maximum allowable noise exposure.  This chart shows the time and noise limits before requiring hearing protection.  The EXAIR Super Air Nozzles, Super Air Knives, Super Air Amplifiers are designed to have laminar flow which is very quiet.  As an example, the model 1210 Safety Air Gun has a sound level of only 74 dBA; well under the noise exposure limit for 8 hours.

Hearing loss is the best known, but not the only, ill effect of harmful noise exposure. It can also cause physical and psychological stress, impair concentration, and contribute to workplace accidents or injuries.

NIOSH created an overview of how to handle hazards in the workplace.  They call it the Hierarchy of Controls to best protect workers from dangers.  The most effective way is by eliminating the hazard or substituting the hazard.  The least effective way is with Personal Protective Equipment, or PPE.  For unsafe compressed air nozzles and guns, the proper way to reduce this hazard is to substitute it with an engineered solution.

One of the last things that companies think about when purchasing compressed air products is safety.  Loud noises and dead-end pressure can be missed or forgotten.  To stop any future fines or purchasing additional personal protective equipment (PPE), it will be less expensive to purchase an EXAIR product.  And with the Hazard Hierarchy of Controls, EXAIR products are that engineered solution.  If you would like to improve the safety in your facility with your current blow-off devices, an Application Engineer at EXAIR can help you.  Remember, safety is everyone’s responsibility. 

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Picture:  Safety First by Succo.  Pixabay License