Which Air Nozzle Is Right For Me?

Well, the obvious answer is, of course, an engineered air nozzle…you’re likely aware of this, or you wouldn’t be reading posts on the EXAIR Corporation blog.  We have no issue with narrowing that down a bit, and saying that the answer is an EXAIR air nozzle.  I bet you knew that was coming as well.  So let’s assume that, because of the cost of compressed air, the potential hazards of its unregulated discharge, and the flat-out racket it can make (unless you do something about it,) you’re looking for something efficient, safe, and quiet.

Now that we’re on the same page, let’s unpack that question.  The nature of the application will let us know the airflow pattern & characteristics (mainly flow & force) that we need.

For example, if you need just a pinpoint of airflow, our Atto Super Air Nozzle blows a 1/2″ diameter pattern at a distance of 3″.  Get a little closer than that, and it’s as tight as you want it to be.  Now, it’s only generating a force of 2oz (at 12″ away) but keep in mind that’s all concentrated in a small fraction of an inch diameter.  Which is plenty for most applications that need that precise of an airflow.

Atto Super Air Nozzle

If you DO need a little more flow & force, our Pico and Nano Super Air Nozzles offer incremental increases in performance.  The pattern starts to widen out, but that’s a function of the increased flow expanding in to atmospheric pressure…it has to go somewhere, you know.  But, again, the closer you get, the more focused the flow is to the centerline of the nozzle.

On the other end of the spectrum are EXAIR’s High Force Air Nozzles.  These are particularly useful for stubborn blowoff applications – a foundry blowing slag off hot strip as it cools, for example.  Our largest of these, a 1-1/4 NPT model, generates 23 lbs of force…that’s over 25 times the power of our standard Super Air Nozzle.

 

With 23 lbs of hard hitting force, this 1-1/4 NPT Super Air Nozzle is perfect for the most extreme blow off and cleaning jobs.

Speaking of the standard Super Air Nozzle, it’s the most popular answer to the Big Question.  It’s suitable for a wide range of blowoff, drying, and cooling applications, like the kinds of jobs an awful lot of folks use open end blowoff devices on.  Open ended tubes blow out a great amount of air, but they’re wasteful and noisy, and OSHA says you can’t use them unless you regulate the pressure to 30psig…where they’re not even going to be all that effective.

Choose from (top left to bottom right) 316SS, Zinc Aluminum, or PEEK Thermoplastic…whatever you need to stand up to the rigors of your environment.

If you’ve got a 1/4″ copper tube, for example, it’ll use 33 SCFM when supplied with compressed air at 80psig.  It’ll for sure get the job done (albeit expensively, when you think of all that compressed air consumption,) but it’ll be loud (likely well over 100 dBA) and again, OSHA says you can’t use it at that pressure.  So, you can dial it down to 30psig, where it’ll be marginally effective, but it’s still going to use more air than the Model 1100 1/4 NPT Super Air Nozzle does at 80psig supply pressure.  The hard hitting force of the Model 1100, under those conditions, will make all the difference in the world.  As will its sound level of only 74 dBA.  Not to mention, it’s fully compliant with OSHA 1910.242(b).  Oh…and you can even install it directly on the end of your existing tube with a simple compression fitting.

One of our customers installed Model 1100 Super Air Nozzles on all their lathe blowoff copper tubes, and saved almost $900 a year in compressed air costs.

We’ve also got engineered Air Nozzles smaller than the 1100 (all the way down to the aforementioned Atto Super Air Nozzle) and a good selection of larger ones, including Cluster Air Nozzles that hold tighter airflow patterns than similar performing single Super Air Nozzles.  They’re available in materials ranging from Zinc-Aluminum alloy, bare aluminum, brass, 303SS, 316SS, or PEEK thermoplastic polymer to meet the requirements of most any area of installation, no matter how typical or aggressive.

If you have an loud, wasteful, and likely unsafe blowoff, you owe it to yourself and everyone else who has to put up with it to consider a better solution.  Call me; let’s talk.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Controlling Compressed Air can be Easy, and Save Thousands of Dollars

The history of automated controls can be traced back to inventors in ancient Greece & Egypt, who sought ways to keep more accurate track of time than afforded by sundials and hourglasses.  Their efforts, dating as far back as 300BC, produced devices actuated by water flow, which is actually quite reliable and repeatable: a set amount of water will flow via gravity through a fixed conduit in the exact same amount of time, every time.  These were in fairly common use until the invention of the mechanical clock in the 14th century.

The Industrial Revolution grew the need for automated processes exponentially…the need to control objects or tooling in motion, fluid flow, temperature, and pressure, just to name a few.  As time passed, the sky was literally the limit: modern aircraft & spacecraft rely on a staggering amount of automated processes from production to operation.

All throughout history, though, the benefits of automation remain the same: making processes more efficient.  That’s where the EXAIR EFC Electronic Flow Control comes in, for automating processes involving compressed air use, by turning air flow off when it’s not needed.  In fact, not only do they provide simple on/off control to blow only when a part is “seen” by the photoelectric sensor, there are eight distinct modes to incorporate delay on or off, flicker on or off, signal on/off delay, interval, or “One-Shot,” where the sensor detects the part, delays opening the valve per the timer setting, and blows for one second.

EFC Electronic Flow Control Systems are already assembled & wired for quick & easy installation.

The EXAIR EFC Electronic Flow Control is a true “plug and play” solution for automating a compressed air application.  Mount the sensor, plumb the valve, plug it in, and you’re ready to go.  There’s no complicated PLC wiring or programming, although the aforementioned mode selections do offer a great deal of flexibility other than “on when the sensor sees it; off when it doesn’t” operation, if desired.  Here are some prime examples of that flexibility, and the monetary benefits due to the compressed air consumption savings:

(Left) On/Off Delay setting used in tank refurbishment application to operate a “halo” of Super Air Knives for blow off as tanks exit oven where old paint is burnt off – $3,393 annual air savings. (Center) Interval setting actuates a Super Ion Air Knife for flat panel display dust blow off/static elimination – $2,045 annual air savings. (Right) Interval setting actuates a “halo” of Super Ion Air Knives to clean & remove static charge from plastic automotive bumper covers prior to painting – $5012 annual savings.

If you’d like to find out more about the EFC Electronic Flow Control can save you time, air, and money, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Free Money! Flat Super Air Nozzles Qualify for Energy Incentive

The patented design of EXAIR’s 1” and 2” Flat Super Air Nozzles makes them a highly efficient option when seeking a powerful, flat airflow. A precise air gap across the width of the nozzle provides a forceful stream of high velocity, laminar airflow without consuming high amounts of compressed air and also resulting in a greatly reduced sound level compared to some of the alternative flat nozzles available in the market.

Flat SAN not dumb picture
EXAIR’s Flat Super Air Nozzles have been blowing away the competition since 2003.

Did you know that upgrading to an efficient engineered air nozzle, such as the 1” or 2” Flat Super Air Nozzle, can make you eligible for an incentive from your energy provider? Similar to other energy-saving programs for upgrading to LED light bulbs or high-efficiency HVAC systems, these are made available to you as an incentive to start using more energy efficient products.

The energy costs associated with the generation of compressed air, often referred to in industry as a 4th utility, can make it expensive. These programs are offered to encourage you to use engineered products that are more energy efficient due to the reduction in compressed air consumption. Essentially, they’re offering you free money to implement a solution that will also save you money. It almost sounds too good to be true!! But these products, after implementation and receiving the incentive, will continue to save you money year after year.

The US Department of Energy, in conjunction with the NC Clean Energy Technology Center, provides a website that allows you to search the various programs available to you in your state. The DSIRE® website allows you to select your state, then select your energy provider to determine what programs are offered.

In Southwest Ohio, Duke Energy provides an incentive that offers $40 USD each per engineered air nozzle that is installed. When replacing open pipe or tube, these nozzles generally pay for themselves relatively quickly. But, when combined with a $40 USD rebate, that return on investment happens even quicker!!!

Don’t leave free money on the table. If you’re using open pipe or tube, or inefficient plastic flat nozzles, replace them with an engineered air nozzle from EXAIR. If you need help determining what rebate programs are available to you in your area, we’re also here to help. Contact an EXAIR Application Engineer today!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Video Blog: How-To Replace The Super Air Scraper Blade

The EXAIR Soft Grip Super Air Scraper is a great tool for any industrial environment that requires some cleanup. Some examples include removing tapes or sticky metal chips from the floor, scraping material from screening towers or removing stubborn adhesives and labels from workstation tabletops. They are available with extensions up to 72″ so reaching remote areas is also easier.

Today’s video is going to showcase how easy it is to replace the scraper blade within the nozzle and get back to work quickly.

If you would like to discuss how the Super Air Scraper could benefit your facility, contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

EXAIR Air Nozzles And Jets: Quiet, Efficient, and Safe Solutions For Blow Off

Compressed air, as a utility, dates back to ancient Egypt, where metal alloy production was enhanced by using bellows devices to force air into furnaces in order to generate the extremely high temperatures needed to meld iron ores.  Major industrial use began in the mid-19th century, as pneumatic drills became popular for tunneling and mining operations.  With the development and large scale production of the modern air compressor in the 20th century, many other uses for compressed air were discovered.

Among the most prevalent of these additional applications is cleaning & blow off.  Mechanical or chemical methods such as washing, scrubbing, brushing, wiping, etc. often take time and considerable effort, when a quick blast of high velocity air from a pressurized source can make quick work of debris and/or moisture removal.  Thing is, unfettered discharge of high pressure air without concern for safety or efficiency has consequences:

  • Open end blow offs without a relief path for the air in case the device is dead ended, can have enough energy to break the skin, causing a dangerous and potentially fatal condition known as an air embolism.  The Occupational Safety and Health Administration (OSHA) specifically addresses this danger in 29 CFR 1910.242(b).
  • They’re also incredibly loud, usually higher than 100 decibels, which exceeds OSHA’s noise exposure limits per 29 CFR 1910.95(a).
  • As if that wasn’t enough, they can waste an awful lot of compressed air too.  The U.S. Department of Energy even goes so far as to classify it as an Inappropriate Use of Compressed Air.

Given these drawbacks, you might wonder why ANYONE would do such a thing!  Well, that’s the nature of our business at EXAIR Corporation: manufacturing quiet, safe, and efficient compressed air products for industry.  Among these are the first engineered products developed by EXAIR:  Air Nozzles and Jets.  No matter what your blow off needs are, we’ve got a solution.  Consider:

  • Performance.  With 73 distinct models to choose from, EXAIR can provide blow off solutions from the pin-pointed precision of our Atto Super Air Nozzle (uses 2.5 SCFM, generates 2 oz of force) to our High Force 1-1/4 NPT Super Air Nozzle (uses 460 SCFM, generates 23 lbs of force.)

    From the Atto Super Air Nozzle’s 2.5 oz pinpoint focus of air flow to the Model 1121’s 23 pounds of force blast, EXAIR has 73 distinct models to choose from.
  • Durability.  Some environments where blow off is required are downright aggressive: high heat, exposure to corrosive chemicals, etc.  With these situations in mind, we offer Air Nozzles & Jets in a variety of materials of construction, as shown to the right:
    • Zinc Aluminum alloy
    • Types 303 and 316 Stainless Steel
    • PEEK (polyether ether ketone) thermoplastic
    • Aluminum
    • Brass
  • Range of operation.  Any blow off device’s performance can be varied by regulating the compressed air supply pressure.  EXAIR offers several products with even greater ability for change:
    • The Model 1009 (Aluminum) and 1009SS (303SS) Adjustable Air Nozzles have a micrometer-like dial that allows you to very precisely set the flow & force to exact requirements.
    • Adjustable Air Jet Models 6019 (brass) and 6019SS (303SS) feature similar operation with a micrometer-like gap adjuster/indicator.
    • Our 1″ and 2″ Flat Super Air Nozzles (available in Zinc Aluminum or 316SS) have a replaceable shim.  The standard models have a 0.015″ thick shim installed, and the High Power models have 0.025″ thick shims.  We also offer individual shims, and sets, ranging from 0.005″ to 0.030″ thicknesses.
    • High Velocity Air Jets come in brass or 303SS, and also have replaceable shims.  The one that comes installed is 0.015″ thick.  The Shim Set gives you a 0.006″ and 0.009″ shim.

      Adjustable Air Nozzles & Jets (left) feature micrometer-type adjustment; Flat Super Air Nozzles and the High Velocity Air Jet (right) have replaceable shims to vary performance.
  • Function. Most of our Air Nozzles generate a high velocity air stream coming straight from its end.  We’ve also engineered some nozzles for specific applications:
    • Model 1144 2″ Super Air Scraper is our popular 2″ Flat Super Air Nozzle with a corrosion resistant scraper blade, making quick work of removing stubborn materials like tape, gaskets, labels, grease, paint, or sealant.  It’s particularly handy when installed on a Soft Grip Safety Air Gun with an appropriate length of pipe extension.
    • Back Blow Air Nozzles are made to clean out inside diameters or blind holes.  Three sizes are available for ID’s of 1/4″ to 16″.

If you’d like to find out more about how EXAIR Intelligent Compressed Air Products can help you get the most out of your compressed air system, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Siphon Fed No-Drip Atomizing Spray Nozzles

With 142 distinct models in stock, the Atomizing Spray Nozzles are easily EXAIR Corporation’s most diverse product line. If you need a reliable method of creating a fine mist of liquid flow with a flow rate as high as 303 gallons per hour (or as low as 0.1 gallons per hour,) with a spray pattern as large as 13 feet (or as small as 2-1/2 inches) in diameter, look no further – we have a spray nozzle for you, on the shelf and ready to go.

Siphon Fed models are the subject of today’s blog – they don’t require that the liquid be under pressure; you can feed them from the vessel the liquid comes in from a siphon height of up to 36 inches, or, for higher flows, from a gravity height of as low as 6 inches.

EXAIR Siphon Fed Nozzles work with non-pressurized liquids, either siphoned (left) or gravity fed (right.)

All Atomizing Spray Nozzles are available with EXAIR’s patented No-Drip option, which positively shuts off liquid flow when the compressed air supply is shut off.  One benefit of this is realized in coating applications, where an errant droplet of liquid would mar an otherwise smooth, even coating.  Operationally, though, it also means you can precisely turn the liquid flow on & off, in short, quick bursts, up to 180 times a second.

By far, the simplest way to do this is with a valve installed in the air supply line to the Atomizing Spray Nozzle.  A manual 1/4 turn ball valve works fine if you want the operator to control it.  Solenoid valves are often used to automate the process, and if you’ve got something to open & close the valve, you’re all set.  For example, if you want to spray coolant onto a cutting tool, just wire the solenoid valve into the on-off switch of the machine, like in the example shown to the right.

Alternately, our EFC Electronic Flow Control System provides a ready-to-go solution.  It comes pre-wired; all you have to do is plumb the valve into the air supply line and plug it in to a 120VAC grounded wall outlet.  When the photoelectric sensor “sees” the part you want to spray, it opens the valve.  When the part passes, it shuts the valve.  Easy as that.

I like this whole video, but if you just want to see the EFC Electronic Flow Control & Atomizing Spray Nozzle in action, skip to the 4:05 mark.

If you have a need to spray a fine, controllable liquid mist, EXAIR has a wide range of solutions.  Give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Steps to Find Compressed Air Leaks in your Facility

The Second Step to optimize your compressed air system is to Find and fix leaks in your compressed air system. The reason leaks are important to find and fix is because they can account for 20-30% of a compressors total output. A compressed air leak fixing process can save 10-20% of that lost volume.

6-steps-from-catalog

Unintentional leaks will result in increased maintenance issues and can be found in any part of a compressed air system. Leaks can be found at a poorly sealed fitting, quick disconnects and even right through old or poorly maintained supply piping. Good practice will be to develop an ongoing leak detection program.

The critical steps needed for an effective leak detection program are as follows:

  1. Get a foundation (baseline) for your compressed air use so you have something to compare once you begin eliminating leaks. This will allow you to quantify the savings.
  2. Estimate how much air you are currently losing to air leaks. This can be done by using one of two methods.
    • Load/Unload systems, where T= Time fully loaded and t=Time fully unloaded:
        • Leakage percent = T x 100
          ——
          (T + t)
    • Systems with other controls where V=cubic feet, P1 and P2=PSIG, and T=minutes
        • Leakage = V x (P1-P2) x 1.25
          ————–
          T x 14.7
  3. Know your cost of compressed air so you can provide effectiveness of the leak fixing process.
  4. Find, Document and Fix the leaks. Start by fixing the worst offenders, fix the largest leaks. Document both the leaks found and the leaks fixed which can help illustrate problem areas or repeat offenders, which could indicate other problems within the system.
  5. Compare the baseline to your final results.
  6. Repeat. We know you didn’t want to hear this but it will be necessary to continue an efficient compressed air system in your plant.

EXAIR has a tool to assist you in finding these leaks throughout your facility, the Ultrasonic Leak Detector. Check one of our other Blogs here, to see how it works!

Leak Detector

 

If you’d like to discuss how to get the most out of your compressed air system – or our products – give me a call.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on FacebookTwitter: @EXAIR_JS