Reduce Sound Level with EXAIR’s Flat Super Air Nozzles

2san_blowaway
EXAIR’s Flat Super Air Nozzles have been blowing away the competition since 2003.

The patented design of EXAIR’s 1” and 2” Flat Super Air Nozzles make them a highly efficient option when seeking a powerful, flat airflow. A precise air gap across the width of the nozzle provides a forceful stream of high velocity, laminar airflow without consuming high amounts of compressed air and also resulting in a greatly reduced sound level compared to some of the alternative flat nozzles available in the market.

EXAIR’s Flat Super Air Nozzles are safe, reliable, and efficient. Here on the EXAIR Blog we frequently discuss dead-end pressure as explained in OSHA Standard 1910.242(b). This directive states that the when compressed air is used for cleaning purposes, the dead-ended pressure must not exceed 30 psig. When pressures greater than this occur, there is potential for an air embolism.

EXAIR’s Flat Super Air Nozzles cannot be dead-ended, which allows us to operate at pressures well above the 30 psig limit. Some competition markets their nozzles as “Extremely Quiet”, but a deeper look into their performance specifications shows that the published sound level reading was taken at a pressure of 29 psig. They must use a pressure of 29 psig because the nozzles are not OSHA compliant at pressures exceeding 30 psig. For the same competitive nozzle, there is no path for air to escape if the nozzle were to be dead-ended or pressed up against the skin. At 29 psig, the nozzle simply isn’t very effective as it doesn’t provide enough force for most applications. This very same nozzle, when operated at 80 psig, actually has a sound level of 85 dBA.

2inNozzlehand_800x

EXAIR’s Model 1122 delivers more force, more efficiently, and at a sound level of just 77 dBA at 80 psig. Remember, sound levels are expressed in dBA as a logarithmic function. This represents a decrease in sound level by 60%! If you’re looking for a means of reducing sound level in your plant, EXAIR’s 1” and 2” Flat Super Air Nozzles are just what you need.

In addition to being very quiet EXAIR’s flat super air nozzles integrate a shim used to adjust the air gap, which changes the maximum airflow and force. Thicker shims will produce more force and flow, while a thinner shim would do just the opposite.Some applications require more force and some require less, which is not always achieved through simple pressure adjustments so the shims provide the flexibility needed for success.

They’re on the shelf in stock. With same day shipping on orders placed by 3:00 ET and an Unconditional 30-Day Guarantee, there’s no excuse to not give them a try!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

The Case For EXAIR Swivel Fittings

One of the more common questions we get here in the Application Engineering department at EXAIR is…

“What’s the best angle to position a Super Air Nozzle?”

The simple (and perhaps a little snarky, but I swear that’s not intended) answer is…

“The angle it takes to get the results you need.”

But wait, there’s more…we’re not going to leave anybody hanging like that. Many blow off applications are going to be best served by a “sweep” of air, at a low angle. That will be ideal for removing a light layer of dust from a relatively flat and smooth surface. A bit larger angle, relative to the surface, may be necessary if you need some impingement force to dislodge sticky, clumpy, or mildly adhesive debris.  Rarely will you want to blow directly, at a perpendicular angle, to a material’s surface.  An exception to this might be if you’re trying to remove excess moisture from a porous and thin material, like a web fiber.

Regardless of what angle you need to aim your Super Air Nozzle, there are several ways to do it.  You can use a compression fitting them onto bendable copper tubing…just don’t bend it too much or too often.  We’ve got Stay Set Hoses that allow for quick & easy repositioning…they come in lengths from 6″ to 36″, and are in stock.

EXAIR Stay Set Hoses and Swivel Fittings are ideal for installation and positioning of your Super Air Nozzle.

If you want to hold it in place firmly and securely, you’re looking for a Swivel Fitting.  They’re available for almost all of our Super Air Nozzles, from the Atto to the 1″ NPT Model 1114 High Force Super Air Nozzle.  They offer 50° of total movement, and are made of Stainless Steel for durability in most any environment.

EXAIR Swivel Fittings have male NPT threads on one end, and female NPT on the other.  The smaller Swivels, for the Atto, Pico, and Nano Super Air Nozzles, have M4x0.5mm, M5x0.5mm, and M6x0.75mm female threads, respectively, in the ball of the swivel itself for direct threading of these small Super Air Nozzles.

EXAIR’s Swivel Fitting Family

Swivel Fittings can also be used with a host of other EXAIR products.  In addition to the Super Air Nozzles, for example, they’ve historically been very popular with our Air Amplifiers.  Here’s a short informational video showing just how versatile they are:

EXAIR Intelligent Compressed Air Products are made to be easy to install & operate.  This is our intent from Research & Development, to Shipping & Receiving.  If you have questions, give me a call.  I want you to get the most out of our products!

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Air Entrainment & EXAIR’s Intelligent Compressed Air Products

Air entrainment is a term that we bring up quite often here at EXAIR. It’s this concept that allows many of our products to dramatically reduce compressed air consumption. The energy costs associated with producing compressed air make it an expensive utility for manufacturers. Utilizing engineered compressed air products that will entrain ambient air from the environment allow you to reduce the compressed air consumption without sacrificing force or flow.

Entrainment
EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

Products such as the Super Air Knife, Super Air Nozzle, Air Amplifier, and Super Air Wipe all take advantage of “free” air that is entrained into the primary supplied airstream. This air entrainment occurs due to what is known as the Coanda effect. Named after renowned Romanian physicist, Henri Coanda, the Coanda effect is used in the design of airplane wings to produce lift. As air comes across the convex surface on the top, it slows down creating a higher pressure on the underside of the wing. This creates lift and is what allows an airplane to fly.

nozzle_anim_twit800x320
EXAIR Super Air Nozzle entrainment

This is also the same principle which is allowing us to entrain ambient air. As the compressed air is ejected through a small orifice, a low-pressure area is created that draws in additional air. Our products are engineered to maximize this entrained air, creating greater force and flow without additional compressed air. Super Air Amplifiers and Super Air Nozzles are capable of up to a 25:1 air entrainment ratio, with just 1 part being the supplied air and up to 25 times entrained air for free!! The greatest air entrainment is achieved with the Super Air Knife at an incredible ratio of 40:1!

This air entrainment principle allows you to utilize any of these products efficiently for a wide variety of cooling, drying, cleaning, or general blowoff applications. In addition to reducing your compressed air consumption, replacing inefficient devices with engineered products will also dramatically lower your sound level in the plant. Sound level in some applications can even be reduced down to a point that would eliminate the need for hearing protection with the OSHA maximum allowable exposure limits set at 90 dBA for an 8-hour shift.

If you have inefficient blowoff devices in your facility, give us a call. An Application Engineer will be happy to help you select a product that will “quietly” reduce your compressed air consumption!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Custom Products from EXAIR Meet Your Specifications

Since EXAIR manufactures and distributes our own products, we have the flexibility to provide custom products, special processing, unique packaging and more. If your process or specifications are something special, let us know and we will do our best to accommodate any special considerations you might need. Following is one example for a customer who purchases air guns.

Several months ago I received a call from a company that was looking for a specialized air gun.  This company was involved in the servicing of highly specialized measuring equipment and needed a safe, quiet, & efficient air gun that also had to be completely oil/contamination free.   This was to ensure no contamination would result from using the air gun on any of their equipment.  Ultimately this meant that every air gun component needed to be washed,  rinsed and dried to ensure there was no residual oils or dirt from manufacturing left on or in any component of the gun.

Our customer decided on the highly versatile Vari-Blast Compact Safety Air Gun with the award-winning Nano Super Air Nozzle, specifically models 1698SS and the 1698SS-6.  EXAIR presented a written process to the customer. This process explained how we would identify and manufacture their specific air gun in order to assure the customer that would receive a consistently clean air gun, every time.

nano nozzle
EXAIR’s Award Winning Nano Super Air Nozzle Performance Characteristics
nano air pattern
1110SS Specifications
img_7897
1698SS
img_7898a
1698SS-6

Additionally the customer had specifications requiring special packaging as they were going to ship these globally to their service team members.  To ensure safe arrival no matter where they are shipped,  EXAIR provides special handling and packaging which exceeds their requirements.

Also, when you are looking for expert advice on safe, quiet and efficient point of use compressed air products give us a call.  We would enjoy hearing from you!

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook

Benefits of Atomized Liquid Nozzles vs. Liquid Nozzles

There are a great many applications that require a spray (as opposed to a stream) of liquid. Certain droplet sizes, and flow rates, are beneficial for certain applications. For example, if you’re fighting a fire, you want as high of a flow rate as possible – the more water you douse the fire with, the quicker it goes out.  You also want a fairly large droplet size, since a mist would tend to evaporate instead of extinguishing the flames.

Pressure washers also benefit from higher (though not near as high as fire hose) flow rates, and droplet sizes.  You want an appreciable flow rate, because that means high velocity, and good sized droplets combine that velocity with their relative mass to “blast” away dirt and detritus from the surface.

Medicine delivery devices, like asthma inhalers, are designed to produce mid-sized droplets, but pretty low (and controlled) flows.  The droplets need to be small enough to efficiently spread the medicine through the breathing passages, but large enough to where they won’t evaporate before they ‘plant’ on the nasal & bronchial membranes to get absorbed.

These are examples of “liquid-only” nozzles…no other media or means of force are used to effect the spraying action.  Most of the time, the droplet sizes in these applications are measured in hundreds of microns, which “liquid-only” nozzles are ideally suited to generate.  Other applications, however, call for much smaller droplet sizes…such as those only attainable through atomization.

EXAIR Atomizing Spray Nozzles use compressed air to create a fine mist of liquid, with droplet sizes as low as 22 microns.

A typical “liquid-only” nozzle is capable of producing droplet sizes of 300-4,000 microns. Atomizing Nozzles’ droplet sizes are consistently under 100 microns, and can be as small as 20 microns!

Small droplet size is key to cost effectiveness in many applications:

  • Think about expensive coatings…the smaller the droplet size, the better and more even the coverage, and the less you have to spray (and pay) out.
  • Or humidification…smaller droplet size means more stays airborne, for longer, and in a larger space.
  • Petroleum based lubricants, by their nature, only require a thin layer for best results.  Smaller droplets make as even and thin of a layer as possible.
  • Dust control is much more effective with smaller droplet sizes, since the longer the mist lingers in the air, the more dust particles the individual droplets will adhere to…and then drop with them to the surface.  This also prevents getting the surface of the material any wetter than it has to be.
142 distinct models. 8 different patterns. Liquid flow rates from 0.1 to 303 gallons per hour. If you’ve got a spraying application, EXAIR has an Atomizing Nozzle for you!

If you’d like to discuss a liquid spraying application, I’d love to hear from you.  Call me.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Adjustable Air Amplifiers Aren’t Just About Adjustability

Adjustability is a key feature for a great many devices:

  • An adjustable wrench – or as I like to call it, the trusty “all 16ths” – is my go-to for work around the house involving anything with a hex…fittings under the sink when I’m cleaning out a drain, nuts & bolts on furniture or household items needing some tightening (or loosening,) etc.  I don’t get out my combination-end wrenches for much except automobile maintenance.
  • Speaking of sinks, my kitchen faucet lets me adjust water flow (and temperature) which is important because I use different flow rates (and temperatures) if I’m getting a tablespoon of water, or if I’m rinsing my hands, or if I’m filling the sink to do dishes.
  • Speaking of tablespoons, I’ve even got an adjustable measuring spoon that lets me get a full tablespoon, a half a teaspoon, or anywhere in between, by moving a lever block back & forth in the spoon head.

Adjustability is a key feature for several EXAIR Intelligent Compressed Air Products too…like our Adjustable Air Amplifiers.  The ‘adjustable’ part has to do with setting the air flow:

Just loosen the locking ring, and you can thread the plug out of, or in to, the body to increase, or decrease the flow and force of the developed flow.  There’s a hole in the plug (opposite the “EXAIR.com” stamp) so you can use a spanner wrench (another adjustable tool!) to thread the plug in or out.

You can get an amazing range of flow from a little twist*:

These are the performance values for a Model 6042 2″ Aluminum Adjustable Air Amplifier with a compressed air supply pressure of 80psig. Regulating the pressure can give you even lower…or higher…flows.                                              *0.002″ to 0.010″ is about 1/4 turn of the plug.

A gap of about 0.010″ is about the max for 80psig supply pressure.  Above that, the air flow overwhelms the Coanda profile, creating a turbulent ‘storm’ in the throat, hampering the efficiency and effectiveness.  The proper “adjustment” for that is to select the next larger Air Amplifier!

While the range of air flow is certainly impressive, their versatility is another major factor in their selection.  I reviewed our Application Database (registration required) for real-life details on Adjustable Air Amplifiers “in the field” and found a litany of other benefits that made them better suited to particular installations than a Super Air Amplifier:

  • A customer who builds automated equipment incorporates the Model 6031 1-1/4″ SS Adjustable Air Amplifier to blow open bags with a puff of air as they move into position on an automated filling machine. They use it because it’s available in stainless steel construction, and it’s still compact & lightweight.
  • A mattress manufacturer uses Model 6043 3″ Aluminum Adjustable Air Amplifiers to  cool mattress springs.  They’re lightweight, the perfect size to match the springs’ profile, and they can “dial them out” for high heat removal before putting springs on a rubber conveyor.
  • A tier 1 automotive supplier has Model 6234 4″ SS Adjustable Air Amplifier Kits installed on their robotic paint line to blow off moisture from parts to prevent water spotting between the wash cycle and the oven.  They use them because the stainless steel construction holds up to high heat due to the proximity to the ovens.
  • A food plant uses Model 6031 1-1/4″ SS Adjustable Air Amplifiers to improve the drying time of 3,000 liter mixers that must be washed between batches of different products.  The stainless steel construction holds up to the rigors of the frequent washdown in this area.
  • A bedding manufacturer replaced a regenerative blower with a Model 6041 1-1/4″ Aluminum Adjustable Air Amplifier for trim removal on stitched fabric at bedding manufacturer.  The blower was prone to failure from lint & dust; the Air Amplifier, with no moving parts, is not.  It’s also compact, lightweight, and virtually maintenance free.
  • A light bulb manufacturer installed Model 6030 3/4″ SS Adjustable Air Amplifiers on the ends of open pipes that were used to cool mercury lamp wicks.  This reduced noise levels significantly while providing the same cooling rate, and the stainless steel construction holds up to the heat of the operation.

Because of the simplicity of their design, Adjustable Air Amplifiers are also extremely adaptable to custom applications.  We’ve added threads or flanges to the inlets and outlets of several different sizes, to accommodate ease of mounting & installation:

Among other custom Air Amplifiers, we’ve put (left to right) threads on the outlet, ANSI flanges on the inlet/outlet, Sanitary flanges on the inlet/outlet, and Sanitary on the inlet/ANSI on the outlet. How are you installing your Air Amplifier?

Adjustable Air Amplifiers are available in both aluminum and 303SS construction, to meet most any environmental requirements…except extreme high heat.  In those cases, the Model 121021 High Temperature Air Amplifier is rated to 700°F (374°C) – significantly higher than the Aluminum – 275°F (135°C) or the Stainless Steel – 400°F (204°C).  They’re commonly used to circulate hot air inside furnaces, ovens, refractories, etc.

A Model 121021 1-1/4″ High Temp Air Amplifier directs hot air to a rotational mold cavity for uniform wall thickness of the plastic part.

Adjustability.  Versatility.  Durability.  If you’d like to know more about the Adjustable Air Amplifier, or any of EXAIR’s Intelligent Compressed Air Products, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Calculating Static Friction To Eject Parts with Air

2″ Flat Super Air Nozzle

In today’s fast-paced world, companies are always looking for ways to do things faster, cheaper, more efficiently without sacrificing safety.

A cereal company had a high-speed system to check the quality of each box of cereal.  When a box did not meet the quality criteria for visual and/or weight, the box would be rejected.  The rejection system that they used was a quick blast of compressed air to remove the box from the conveyor line into a non-conforming bin.  For their first attempt, they tried to use a ¼” copper tube with a solenoid valve attached to a reservoir tank.  When a “bad” box was detected, the solenoid would be triggered, and compressed air would “shoot” the box off the rubber conveyor belt.  The ¼” copper tube can be an inexpensive, common, and easy-to-use device; but they found that the copper tube was very loud (above OSHA limits for noise exposure) and not very effective.  As a note, this company had a safety committee, and they wanted to keep all blowing devices below 80 dBA in this department.  The ¼” copper tube was around 100 dBA.  So, they contacted EXAIR to get our expertise on this type of application.

The cereal company gave me some additional details of the operation.  The box weighed 26 oz. (740 grams) with a dimension of 7.5″  wide by  11″ tall by  2 3/4″ deep (19 cm X 28 cm X 7 cm respectively).  The issue with the ¼” copper tube was the small target area compared to the area of the box.  With any slight variation in the timing sequence, the force would miss the center of mass of the box.  The box could then spin and remain on the conveyor belt.  This would cause stoppage and disruption in the system.  They asked if EXAIR had a better way to remove the defective boxes.

I recommended a model 1122, 2” Flat Super Air Nozzle.  The reason for this style of nozzle was for a variety of reasons.  First, we needed a larger area to “hit” the box.  This Flat Super Air Nozzle has a width of 2” versus the ¼” copper tube.  This increased the target area by 8 times.  So, any small variations in time, we could still hit the center of mass and remove the box.  The second reason was the force rating.  The model 1122 has a force of 22 oz. (624 grams) at 80 PSIG (5.5 bar).  This is slightly under the 26 oz. (740 grams) weight of the cereal box, but we are just sliding the box and not lifting it.  If we can overcome the static friction, then the box can be easily removed.  With Equation 1, we can calculate the required force.

Equation 1:

Fs = ms * W

Fs – Static Force (grams)

m– Static Friction

W – Weight (grams)

From the “Engineering Toolbox”, the static friction between rubber and cardboard is between 0.5 to 0.8.  If I take the worse case condition, I can calculate the static force between the belt and cereal box using Equation 1:

Fs = 0.8 * 740 grams

Fs = 592 grams

The model 1122 has a force of 22 oz. (624 grams), so plenty enough force to move the box from the rubber conveyor belt.

The third reason for this nozzle is the noise level.  The noise level of the model 1122 is 77 dBA, well below the safety requirement for this company.  Noise levels are very important in industries to protect operators from hearing loss, and the model 1122 was able to easily meet that requirement.  I added an additional reason for recommending the 2” Flat Super Air Nozzle; compressed air savings.  Companies sometimes overlook the cost when using compressed air for blow-off devices.  In this comparison, the ¼” copper tube will use 33 SCFM (934 SLPM) at 80 PSIG (5.5 bar) while the model 1122 will only use 21.8 SCFM (622 SLPM).  This is a 33% reduction in compressed air; saving them money.

At the intro, I mentioned that companies are looking to do things faster, cheaper, more effective without sacrificing safety.  For this company, we were able to increase production rates by removing every cereal box from the conveyor belt.  We also saved them money by reducing the compressed air requirement as well as keeping it safe by reducing noise.

If you have an application that needs products to be moved by air, you can contact an Application Engineer at EXAIR to help you with a solution.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb