Measuring and Adding Sounds


My colleague, Russ Bowman, wrote a blog about “Sound Power Level and Sound Pressure”.  He discussed the logarithmic equations around sound.  I will be discussing what happens when you have more than one sound source, as often heard within manufacturing plants.  Sounds can be added together to determine the overall sound level that your hear.  This is very important when it comes to minimizing hearing loss.

In looking at a single source of sound, sound pressure is created by the loudness of a noise.  The units are measured in Pascals.  The lowest pressure perceived by human hearing is 0.00002 Pa, and we can use this value as a reference point.  From sound pressures, we can arrive to a sound pressure level which is measured in decibel, dB.  This correlation between sound pressures and sound pressure levels are calculated by Equation 1:



L – Sound Pressure Level, dB

P – Sound pressure, Pa

Pref – reference sound pressure, 0.00002 Pa

As an example, the sound pressure from a passenger car as heard from the roadside is 0.1 Pa.  With Equation 1, we can get the following decibel level:

L = 20 * Log10 (0.1Pa/0.00002Pa) = 74 dB

Because human ears are sensitive to different frequencies, the sound pressure levels can be modified, or weighted, to indicate an effective loudness level for humans.  This adjustment is done in two different ways; A-weighting and C-weighting.  The C-weighting is for very loud noises with high peaks or sharp impacts like gunfire. The A-weighting is the most commonly used value as the sound pressure levels are adjusted by the frequency level.  For higher and lower frequencies, the change in the sound value is much greater than the mid-level frequencies that are within our hearing range.  Sound measurements for safety are measured in the A-weighted scale.  OSHA created a chart in the 29CFR-1910.95(a) standard that shows the noise levels over exposure times for an operator.  To use the OSHA chart accurately, the total noise level in dBA should be calculated.

OSHA Chart

To determine the total sound level, we can add all the sound pressure levels together by Equation 2:



Where L1, L2… represents the sound pressure level in dBA for each sound source.

As an example, a manufacturing plant had an operator using a machine that had four copper tubes to blow off a cutting operation (reference photo below).

Blow off station

The decibel level for a copper tube was measured at 98 dBA.  The total amount of sound that the operator was exposed to was determined by Equation 2 with four values.

L = 10 * log10 (109.8 + 109.8 + 109.8 + 109.8)

L = 104 dBA

In looking at the OSHA chart, the operator would only be allowed to operate the machine only a little over one hour without hearing protection.  In this same example, we replaced the copper tubes with an EXAIR Super Air Nozzle, model 1110SS.  The noise level for each nozzle is 74 dBA.  By replacing all four copper tubes with Super Air Nozzles, Equation 2 becomes:

L = 10 * log10 (107.4 + 107.4+ 107.4 + 107.4)

L = 80 dBA

The total sound level is now in accordance with OSHA regulations for the operator to work all 8 hours at the machine without hearing protection.

A commonly used acronym in hearing safety is NIHL, or Noise Induced Hearing Loss.  To keep your operators safe and reduce NIHL, it is important to measure the total sound level.  As a protocol in safety, it is a requirement to use engineering standards before purchasing personal protective equipment or PPE.  For the customer above, they followed that protocol with our Super Air Nozzles.  If you need to reduce noise levels in your facility by engineering standards, EXAIR offers a large line of blow-off products that can meet the safety requirements.


John Ball
Application Engineer
Twitter: @EXAIR_jb


Photo of Ear auricle Listen by geraitCC0 Create Commons.


Compressed Air and Safety


Compressed air is generally considered the fourth utility in industrial, commercial and back-yard settings.  It is used to power pneumatic equipment, cleaning surfaces, conveying materials, etc.  The compressor reduces the volume inside a chamber to increase the pressure.  The compressed air typically is contained in a reservoir tank for distribution to pneumatic equipment and devices.  Since air is a compressible fluid it has stored energy; and, if not used properly, it can be hazardous.  Most people perceive compressed air as harmless, but this is untrue.  It can be very dangerous.  Here are some potential risks when using compressed air:

  1. If the air pressure against the skin becomes greater than 30 PSI, air can penetrate through the membrane and cause an embolism which could be fatal.  The term used is Dead-End pressure, any end-use nozzle or blowoff product cannot exceed 30 PSI dead-end pressure.
  2. Hearing damage can occur from exposure to loud noises from compressed air exhausting from pneumatic equipment or devices.
  3. Proper use of Safety Air Guns and Safety Air Nozzles is a must. They should not be modified or tampered with.  For example, tying the trigger on an air gun for continuous blowing or modifying the nozzle to get a different blowing pattern.
  4. Compressed air can generate high velocities which can shoot chards of debris. The accelerated fragment can injure any part of the body even from bounce-back.
  5. If the air pressure is higher than the recommended rating for the equipment, uncontrolled eruptions can occur which can send broken pieces everywhere.
  6. When air hoses or lines are laying on the floor, near pinch points, or degrades from the environment, a break can occur causing unrestrained hose “whipping”.

Some safety precautions can be followed in your area when using compressed air products.  They may seem basic, but they are commonly overlooked.

  1. Verify that all compressed air components are rated to be used for the maximum line pressure.
  2. Use shut-off valves nearby to isolate the system from the main compressed air line.
  3. Have general inspection on your compressed air system to check for pipe degradation, leaks, faulty pneumatics, etc.
  4. When you go to repair items attached to the compressed air line, make sure to use proper lockout procedures to isolate and remove the hazardous energy.
  5. Remember that compressed air is not a toy and use proper PPE when required.
  6. If any pneumatically operated product is damaged, remove it from service and either repair it or replace it.
EXAIR Products

In 1970, Occupational Safety and Health Administration, OSHA, was enacted by the Department of Labor.  This organization was created “to ensure safe and healthful working conditions for working men and women”.  They created a set of laws and standards that they enforce with heavy fines and reoccurring visits if not followed.  The Department of Labor lists these laws under title 29 in the Code of Federal Regulations (CFR).  For general industry, these safety regulations are under part 1910 of 29 CFR.  To give a few examples, 29 CFR 1910.242b gives the explanation about dead-end pressure.  Under 29 CFR 1910.95a shows the maximum allowable noise exposure.  The reason that I noted these two OSHA standards as they are commonly overlooked with Safety Air Guns, and commonly fined by OSHA for improper nozzles.

Safety is everyone’s responsibility, and EXAIR products can be a key.  If you would like to discuss how to improve your workplace, you can contact an Application Engineer at EXAIR.     Because hazards and fines can be detrimental to your company when it comes to compressed air safety.

John Ball
Application Engineer

Twitter: @EXAIR_jb


Photo: Attention Warning Sign by Peter-LomasCreative Commons: CCO



Increase Safety and Gain OSHA Compliance By Using An Engineered Solution

In 1972, the US Department of Labor’s Occupation Safety & Health Administration (OSHA) established Standard 29 CFR 1910.242(b) to reduce the outlet pressure to less than 30 psi, of an open pipe, nozzle, air gun, etc. when being used for cleaning. The intent of this directive was to prevent injury to operators. They determined that 30 psi was the pressure in which the skin could be broken if the device were dead-ended against the operator’s body, causing an injury known as an air embolism…the dead-ended force of the air, under pressure, breaks the skin and introduces air flow inside the body. This is a VERY dangerous condition which can quickly lead to serious injury, possible stroke or ultimately death.

While OSHA doesn’t recommend any type or manufacturer of device, they do provide two methods you can follow to gain compliance.

The first would be to reduce the operating pressure below 30 PSI, as shown in the below line drawing.  This, of course, limits the strength and usefulness of the exhausting air flow before it reaches the nozzle and before it is used upon the application.


The other method indicates using a nozzle which includes a pressure reducer or a relief device which will reduce the air pressure to less than 30 psi if the nozzle is dead ended. All of EXAIR‘s products are engineered to meet or exceed this Standard. In the case of our Super Air Nozzles, the air exits through a series of jets, recessed behind an array of fins, so the outlet holes cannot be blocked directly, any potential obstruction of the outlet air holes results in the air having an alternative route to avoid injury to operators and personnel. This allows the full pressure (the highest energy) to reach the nozzle and the application

Open air lines and homemade blow offs violate OSHA standard 1910.242(b) because of harmful dead end pressures. If you would like to discuss how EXAIR products can help you gain OSHA compliance to increase personnel safety and avoid costly fines, please give me a call, I’d be happy to help.

Justin Nicholl
Application Engineer

Line drawings used from OSHA’s website

The Case For The Cold Gun

Albert Einstein famously said, “Nothing happens until something moves.” And unless it’s in a perfect vacuum when it moves, there’s gonna be friction. Especially if it’s in contact with something else besides air.  And where there’s friction, there’s heat. This pretty much applies to almost every single evolution in the manufacture of…well, just about everything.

I’m probably not telling you anything you don’t already know, but heat can be a BIG problem.  It can:

  • Shorten tool life. Not only do worn tools take longer to cut, they can also present safety issues.  You can get hurt WAY worse by a dull blade than a sharp one.
  • Cause thermal expansion. If you’re machining something to a precise tolerance, and friction heat causes it to grow, it won’t be the same size when it cools down.
  • Melt plastics. And even softer metals.  This isn’t good for the part…or the tool, either.

Those are just a few of the problems heat causes in manufacturing operations, and they’ve been traditionally addressed with mist (liquid) coolants.  And they work just fine…most of them are water-based, and if you want to get heat out of a solid piece of something, water will do the job VERY quickly.  Other additives in the coolant provide a measure of lubricity, corrosion control, emulsion prevention, etc.  It’s easy, well-known, and time-tested.  There are some drawbacks, however:

  • It can be messy.  When a part (or a tool) in motion gets sprayed down with liquid, it tends to fling that liquid all over the place.  That’s why most machines fitted with mist coolant have spray shields.
  • Not only is it a hassle to clean up, if you don’t stay on top of the clean-up, it can lead to slip hazards.
  • Speaking of hazards, if you can smell that mist (and you know you can,) that means you’re breathing it in too.  Remember the lubricants, corrosion inhibitors, emulsion preventers, etc., I mentioned above?  Yeah…they’re not all what you might call “good for you.”
  • Recirculation systems are common, which means the coolant sump is gathering solids, so the lines and/or spray nozzles can clog and be rendered useless.

EXAIR Cold Gun Aircoolant Systems not only address all of the above problems with heat, but eliminate all the problems associated with liquid coolant:

  • They incorporate EXAIR’s Vortex Tube technology to produce a stream of cold air.
  • They’re reliable.  There are no moving parts; if you supply them with clean, dry air, they’ll run darn near indefinitely, maintenance free.
  • They’re quick & easy.  With a built-in magnet for mounting and a flexible cold air hose, you can be be blowing cold air right where you want it as quickly as you can attach an air hose and open the valve.
  • Speaking of opening the valve, that’s all it takes to run a Cold Gun.  They’re producing cold air at rated flow and temperature, right away.  No “ramp up” time to get into operation.
  • They’re clean.  That cold air stream just becomes…well, air.  No mess.  No slip.  No clean up.  No smell.  No problem.

We’ve got four Models to choose from, depending on the nature of the application:

Both the standard and the High Power come with a Filter Separator, and are available with a one, or two, outlet cold air hose.

If you need to cool parts or tools down, and want it to be effective and clean, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Proper Supply Lines are Key to Air Knife Performance

A few weeks back I chatted with a customer on an Air Knife application where they were using our 48″ aluminum Super Air Knife to remove leftover dough from a baking pan. The knife was working somewhat, but they were seeing some residual dough being left in certain areas on the pans due to what they perceived as “weak” airflow. After reading through our catalog and installation guide, they noticed that there were available shim sets that would allow them to increase the gap setting to get more force and flow out of the knife.

Available in lengths from 3″ to 108″ in aluminum, 303ss or 316ss construction

Our aluminum Super Air Knives are shipped from stock with a .002″ shim installed. The optional shim set includes a .001″, .003″ and .004″ shim that would allow you to decrease or increase the performance. By operating the Super Air Knife with the .003″ shim installed, this would increase the force and flow by 1.5 times and using the .004″ shim would double the performance. Sometimes achieving greater force and flow may be required but with the customer saying they were seeing weak airflow, it seemed there may be a restriction on the supply side.

Super Air Knife with Shim Set

I asked the customer how the knife was plumbed and what size supply lines he was using. He advised that they were plumbing air to all 3 inlets on the bottom of the knife but they were using 3/4″ hose with a run of about 30′. I advised the customer that plumbing air to all 3 inlets is required for a 48″ Super Air Knife but we actually recommend 3/4″ Schedule 40 Pipe up to 10′ or 1″ pipe up to 50′. If using hose, he would need to go up a size to maintain a large enough ID to carry the volume required for the unit. In his case, since the length of the supply is close to 30′, he would need to use 1-1/4″ ID hose.

Improper plumbing line size is a common issue we deal with here at EXAIR. Using undersized supply lines can cause excessive pressure drops because they aren’t able to carry the volume of air necessary to properly supply the compressed air device. In this particular application, if the customer were to install either the .003″ or .004″ shim, while keeping his current plumbing size, the performance would actually be worse as now the lines are even more undersized due to the increased air volume requirement from the larger Super Air Knife gap.

If you are looking to change the performance with one of our Air Knives or if you would like to discuss a particular application or product, please contact one of our application engineers for assistance at 800-903-9247.

Justin Nicholl
Application Engineer

Proper Supply Line Size And Fittings Provide Peak Performance

Many times when we provide the air consumption of an EXAIR product, we get a response like…. “I’ve got plenty of pressure, we run at around 100 PSIG”. While having the correct pressure available is important, it doesn’t make up for the volume requirement or SCFM (Standard Cubic Feet per Minute) needed to maintain that pressure. We commonly reference trying to supply water to a fire hose with a garden hose, it is the same principle, in regards to compressed air.

When looking to maintain an efficient compressed air system, it’s important that you use properly sized supply lines and fittings to  support the air demand (SCFM) of the point-of-use device. The smaller the ID and the longer the length of run, it becomes more difficult for the air to travel through the system. Undersized supply lines or piping can sometimes be the biggest culprit in a compressed air system as they can lead to severe pressure drops or the loss of pressure from the compressor to the end use product.

Take for example our 18″ Super Air Knife. A 18″ Super Air Knife will consume 52.2 SCFM at 80 PSIG. We recommend using 1/2″ Schedule 40 pipe up to 10′ or 3/4″ pipe up to 50′. The reason you need to increase the pipe size after 10′ of run is that 1/2″ pipe can flow close to 100 SCFM up to 10′ but for a 50′ length it can only flow 42 SCFM. On the other hand, 3/4″ pipe is able to flow 100 SCFM up to 50′ so this will allow you to carry the volume needed to the inlet of the knife, without losing pressure through the line.

Pipe size chart for the Super Air Knife

We also explain how performance can be negatively affected by improper plumbing in the following short video:


Another problem area is using restrictive fittings, like quick disconnects. While this may be useful with common everyday pneumatic tools, like an impact wrench or nail gun, they can severely limit the volumetric flow to a device requiring more air , like a longer length air knife.

1/4″ Quick Connect

For example, looking at the above 1/4″ quick disconnect, the ID of the fitting is much smaller than the NPT connection size. In this case, it is measuring close to .192″. If you were using a device like our Super Air Knife that features 1/4″ FNPT inlets, even though you are providing the correct thread size, the small inside diameter of the quick disconnect causes too much of a restriction for the volume (SCFM) required to properly support the knife, resulting in a pressure drop through the line, reducing the overall performance.

If you have any questions about compressed air applications or supply lines, please contact one of our application engineers for assistance.

Justin Nicholl
Application Engineer

Crescent Hammers, Phillips Head Punches, and Other Cautionary Tales

I don’t want to sound “preachy,” but I’m a stickler for using the right tool for the job. Case in point: just the other day, I noticed (OK; my wife told me about) a loose drawer handle. I went to my toolbox in the garage to get a flat-head screwdriver, even though the drawer in question had a selection of butter knives, any one of which could have been used to tighten that screw.

I can trace this, without doubt or hesitation, to my service in the US Navy, under the direction of Senior Chief Cooper.  Proper tool selection & use was VERY important to him.  He stressed the issues of safety, quality, and performance, but if that didn’t work, he’d make his point with an offer to demonstrate the use of a specific tool (a ball peen hammer) on a sensitive part of your anatomy (it’s exactly the part you’re thinking of.)  At that point, it would have been unwise (and unsafe) to question whether that was a proper use of the tool or not.

Only one of these is a hammer………………..….only one of these is a punch………………..…..only one of these is a chisel.
Choose wisely.

Likewise, there are safety, quality, and performance issues associated with compressed air blow offs.  At EXAIR, we’re ALL sticklers about this, and we get calls all the time to discuss ways to get more out of compressed air systems by using the right products.  Here’s a “textbook” example:

A hose manufacturer contacted me to find out more about our Air Wipes, and how they might be a better fit for their various cleaning & drying applications (spoiler alert: they are.)  The blow offs they were using were made of modular hose, designed (and very successfully used) for coolant spraying in machine tools.

Only one of these is a compressed air blow off. Again…choose wisely.

The selection process was two-fold: they purchased one Model 2401 1″ Super Air Wipe to verify performance, and they sent in some of their modular hose assemblies for Efficiency Lab testing.  The first part was just as important as the second because, no matter how much air they were going to save (another spoiler alert: it was significant,) it wouldn’t matter if it didn’t get the job done.  At the station shown above, the Super Air Wipe resulted in superior performance, and a compressed air cost savings of over $400.00 annually.  For that one station.  Based on that, they outfitted TWENTY FIVE stations with engineered product sized for their different hoses, using our Model 2400 (1/2″), 2401 (1″), 2402 (2″) and 2403 (3″) Super Air Wipes.

If you’d like to find out how using the right product for the job can help your operation, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook