Where Has The VariBlast Compact Safety Air Gun Been All My Life?!?

Have you ever happened across something that would have been a real “game changer” at some time in the past? I’ll never forget the time that I went camping with my sons’ Boy Scout Troop, and I was introduced to the peanut butter and bacon sandwich. I still enjoy one from time to time, but my doctor does not enjoy hearing about it…

I’ve also written before (and before) about when I found out EXAIR Vortex Tubes were being used in some shipyards for freeze sealing pipes…a task that (when I worked in a shipyard) we used tanks of liquid nitrogen for.  I was amazed that such a cumbersome ordeal was replaced by something so simple and easy.

When we were developing the VariBlast Compact Safety Air Gun, a key feature…the variable flow trigger…also would have been real handy at a time in my not-so-distant past.  See, I used to run a small industrial equipment service department, and one time I found myself in a pinch to get a structural steel tube frame made for a support for a particular piece of equipment.  This wasn’t something we did all the time, and this particular job was a bit larger scale than most of what we’d done before.   It wasn’t really a big deal; I just had to cut some rectangular tubing to length with our band saw, drill some small holes (for bolts) and bore some larger holes (for cables & hose) along the length.

We had a small air compressor and a cheap commercial grade air gun, which served the purpose of our infrequent usage. Blowing the shavings away from those holes, and the inside of the tubing was a challenge…that air gun would just barely move them all the way from the holes near the middle, and when I blew out the holes near the ends, the spray of coolant-soaked shavings was making a heck of a mess in our relatively small shop.  After a while, I found that I could kind of “mash” the trigger a little to one side and get a rough measure of control…I was only going to have to mop about half the floor, instead of the whole thing, and I wasn’t going to have to wash the service truck parked in the closest garage bay to the shop area.

Needless to say, this wasn’t exactly ergonomic, and it was  real pain (literally) to use my left hand for a few days following.  Which, being left-handed, was kind of a drag.

Fast forward to just last year, when we rolled out the latest and greatest (in a distinguished line of latest and greatest) EXAIR product: the VariBlast Compact Safety Air Gun.  Now, individually, the key features might not be all that mind-blowing to the casual observer, but taken together, they’re a pretty big deal. Consider:

*Aluminum construction – lightweight, durable, corrosion resistant.

*Two compressed air inlets – one on the bottom (below your pinkie finger) and one on the rear (above your thumb;) your choice…whichever makes your task easier.

*Cast-in hanger – to keep it out of the way, but still handy, when you’re not using it.

*Chip Shield – you still have to wear safety glasses, but this will keep them cleaner.

*Wide selection of engineered nozzles – from our Atto Super Air Nozzle (2.5 SCFM; 2.0 oz force) to the 1″ High Power Flat Super Air Nozzle (17.5 SCFM; 16 oz force,) there are 20 distinct models in stock.  We can customize the performance of the VariBlast Compact Safety Air Gun to the specific needs of your intended use for it.

*Extensions – for applications that require a little (or a little more) reach, we offer the VariBlast Compact Safety Air Gun with rigid aluminum extensions up to 72″ in length.  These are particularly handy when used with the Atto Back Blow Nozzle.

*Variable pull trigger – as the name implies, you can “vary the blast” by how hard (or not) you pull the trigger.  Like I said before, you can do this – kind of – with a run of the mill commercial grade air gun, but it’s not very precise, and far from ergonomic.  Here’s a short video showing just how sensitive that trigger pull is:

If you’d like to give one a try, EXAIR offers these – and any catalog product for that matter  – with a 30 Day Unconditional Guarantee.  We invite you to put it through its paces for up to a month.  If it’s not going to work out for you, for any reason, we’ll arrange return for full credit.  Give me a call – we can talk about how you intend to use it, and which one’s right for you.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

The Case For The Adjustable E-Vac Vacuum Generator

Vacuum generation is vital to many industrial processes:

*Pick-and-place. Vacuum cup systems are used to move metal sheets onto laser & plasma cutting beds, precisely place parts for assembly using end-of-arm robotic tooling, or moving awkward objects, like plates of glass, by hand.

The same Adjustable E-Vac Vacuum Generator can be used for a range of products, from the cinder bloc (left) to small pavers (right.)

*Bag/package opening.  When plastic bags come off a roll and are fed through an automated filler, vacuum cups can make quick work of opening them up, immediately before the filling operation.

*Vacuum filling.  A closed container can be easily filled, without a pump, by simply drawing a vacuum on it.  Same mechanism (and simplicity) as when you drink a beverage through a straw.

These are just a few of the typical uses for an EXAIR E-Vac Vacuum Generator…I’ve written before about how this is our most versatile product line (by number of different applications) but these in particular are the ones I want to use to make the case for the Adjustable E-Vacs.

EXAIR Adjustable E-Vac Vacuum Generators are available in four distinct models, depending on the needs of your application.  Performance is variable not only by regulating the air supply pressure (like any compressed air product) but also by threading the plug into the body, which changes the size of the annular gap that feeds the Venturi, changing the vacuum and flow levels.  This can be used to overcome vacuum loss due to material porosity or vacuum cup leakage in a pick-and place application, to accommodate different bag sizes or types in an opening application, or to change the rate at which a liquid is moved in a vacuum filling operation.

With four to choose from, EXAIR has an Adjustable E-Vac that will fit your vacuum generating needs.

Because of their larger throat diameter, they’re also better suited for situations where particulates or moisture may be entrained…they won’t clog or ‘stall out’ as is common with other Venturi-type products.  This is especially useful in vacuum chucking/clamping, or when contaminants from dirty environments can make their way into the system.

EXAIR E-Vacs provide instantaneous vacuum response, and are engineered for high efficiency to minimize air consumption.

Like EXAIR In-Line Vacuum Generators, they instantly develop rated vacuum as soon as compressed air is supplied, so they’re well suited for fast moving operations.  With no moving parts, they’re durable, effective, and if you feed them with clean, dry air, they’ll operate a good long time, virtually maintenance free.

If you have a vacuum generating application you’d like to discuss, please give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Let’s Size A Cabinet Cooler System!

I can’t remember the last time I put an exclamation point in the title of my blog, but it was probably the last time I got to talk about doing math. Or write about heat transfer.  Insert your favorite engineer joke here…I’m sure I have it coming.

We’re in the dog days of summer (in the Northern Hemisphere) for sure…or, as we call it, “Cabinet Cooler Season.”  If you’re having heat related problems with a control panel, give us a call; we can help.  If you’d like to know what we’re going to talk about, read on.

Heat can cause real problems for electrical and electronic components, in a hurry…we all know that.  Fortunately, we can also specify the right Cabinet Cooler System for you in a hurry too.  And since we keep them all in stock, we can get it to you in a hurry as well.

You can access our Cabinet Cooler Sizing Guide online, here.  You can fill in the blanks and submit it, or you can call in your data.  We do it over the phone all the time, and it only takes a minute.  Here’s what we’re going to ask for, and why:

Enclosure dimensions.  We need the length, width, and height of your enclosure to calculate the heat transfer surface, and the volume of the enclosure.

Current Internal Air Temperature.  How hot is it inside your enclosure?  This is the starting point for figuring out the internal heat load…how much heat the components inside the box is generating.  This needs to be the air temperature – don’t use a heat gun, or you’re going to give me the surface temperature of something that may or may not be close to what I need.  Just put a thermometer in there for a few minutes.

Current External Air Temperature.  How hot is it in the area where the enclosure is located?  We’re going to compare this to the internal air temperature…the difference between the two is actually proportional to the heat load.  Also, if there’s anything cooling the enclosure right now (like circulating fans; more on those in a minute,) this reading is key to figuring out how much heat they’re removing.

Maximum External Air Temperature.  How hot does it get in the area on, say, the hottest day of summer?  We’ll need this to calculate the external heat load…how much heat the enclosure picks up from its surroundings.

Maximum Internal Temperature Desired.  Most electrical and electronic component manufacturers publish a maximum operating temperature of 104F (40C) – it’s kind of an “industry standard.”  Based on this, a lot of us in the enclosure cooling business set our products’ thermostats to 95F (35C) – if we’re maintaining the air temperature a decent amount cooler than the components are allowed to get, history and practice has shown that we’re going to provide more than adequate protection.  If your enclosure houses something with more sensitive temperature limitations, though, we can work with that too…that’s the only time you’re going to want to put something other than 95F (35C) in this field.

Cabinet Rating.  This is all about the environment…we offer three levels of protection, per NEMA standards:

NEMA 12 – oil tight, dust tight, indoor duty.

NEMA 4 – oil tight, dust tight, splash resistant, indoor/outdoor duty.

NEMA 4X – oil tight, dust tight, splash resistant, corrosion resistant, indoor outdoor duty.

The NEMA rating does not affect the cooling capacity at all.

Other:  If the enclosure is mounted to the side of a machine, or a wall in the plant, you really don’t need to put anything here.  If it’s outside and exposed to direct sunlight, tell us what the surface finish (i.e., polished metal, painted grey, etc.) is so that we can account for solar loading too.  If anything else is unusual or peculiar about the application, let us know that too.

My Cabinet Is…Not Vented, Vented, Wall Mounted, Free Standing, Fan(s).  We’ll use what you tell us here to verify heat transfer surface (a wall mounted cabinet’s back surface isn’t a radiative surface, for example.)  Also, I mentioned fan cooling before, so without further ado…

Fan diameter or SCFM.  If there are fans circulating air into (and/or out of) the enclosure, they’re providing a finite amount of cooling right now.  Proper installation of a Cabinet Cooler System is going to require their removal.  Running a Cabinet Cooler System on a vented enclosure is just like running your air conditioner with the windows open.  So, if we know the size (or the SCFM…sometimes there’s a label on those fans, and we LOVE those folks who do that) then we can use that, and the temperatures you gave us above, to take the fan cooling into account.

Once we have all this information, it’s down to the math. Like I said, we do this all the time (especially during “Cabinet Cooler Season”) – give me a call.  Your heat problem isn’t waiting; why should you?

Before I go…here’s a nice little video, walking you through the Cabinet Cooler Sizing Guide.  Yes, I just made you read the book before watching the movie…feel free to tell me which one you liked better.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Video Blog: EXAIR Atomizing Spray Nozzles Product Line

Want to learn more about EXAIR’s line of Atomizing Spray Nozzles?  This short video will familiarize you with their benefits, features, and capabilities.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

What’s The Big Deal About Clean Air?

Compressed air isn’t called manufacturing’s “Fourth Utility” (the first three being electricity, water, and natural gas) for nothing. Pneumatic tools are popular because they’re often so much lighter than their electric counterparts. Compressed air can be stored in receiver tanks for use when other power supplies are unavailable or not feasible. Many compressed air operated products can be made to withstand environmental factors (high/low temperature, corrosive elements, atmospheric dust, oil, other contaminants, etc.,) that would make electric devices very expensive, unwieldy, or impractical.

One of the most valuable considerations, though, is that your compressed air system is, by and large, under your control.  The type and capacity of your air compressor can be determined by your specific operational needs.  The header pressure in your supply lines is based on the applications that your air-operated devices are used for.  And the performance & lifespan of every single component in your compressed air system is determined by the care you take in maintaining it.

I covered the importance of compressed air system maintenance in a blog a while back…today, I want to focus on clean air.  And, like the title (hopefully) makes you think, it’s a REALLY big deal.  Consider the effects of the following:

Debris: solid particulates can enter your air system through the compressor intake, during maintenance, or if lines are undone and remade.  If you have moisture in your air (more on that in a minute,) that can promote corrosion inside your pipes, and rust can flake off in there.  Almost all of your air operated products have moving parts, tight passages, or both…debris is just plain bad for them.  And if you use air for blow off (cleaning, drying, etc.,) keep in mind that anything in your compressed air system will almost certainly get on your product.

Your compressed air system may be equipped with a main filter at the compressor discharge.  This is fine, but since there is indeed potential for downstream ingress (as mentioned above,) point-of-use filtration is good engineering practice.  EXAIR recommends particulate filtration to 5 microns for most of our products.

Water: moisture is almost always a product of condensation, but it can also be introduced through faulty maintenance, or by failure of the compressor’s drying or cooling systems.  Any way it happens, it’s also easy to combat with point-of-use filtration.

EXAIR includes an Automatic Drain Filter Separator in our product kits to address both of these concerns.  A particulate filter element traps solids, and a centrifugal element “spins” any moisture out, collecting it in the bowl, which is periodically drained (automatically, as the name implies) by a float.

Point of use filtration is key to the performance of your compressed air products, and their effectiveness. Regardless of your application, EXAIR has Filter Separators to meet most any need.

Oil: many pneumatic tools require oil for proper operation, so, instead of removing it, there’s going to be a dedicated lubricator, putting oil in the air on purpose.  Optimally, this will be as close to the tool as possible, because not all of your compressed air loads need oil…especially your blow offs.  If, however, a blow off device is installed downstream of a lubricator (perhaps due to convenience or necessity,) you’ll want to do something about that oil. Remember, anything in your system will get blown onto your product.

If this is the case, or you just want to have the cleanest air possible (keep in mind there is no downside to that,) consider an EXAIR Oil Removal Filter.  They come in a range of capacities, up to 310 SCFM (8,773 SLPM,) and the coalescing element also offers additional particulate filtration to 0.03 microns.

In closing, here’s a video that shows you, up close and personal, the difference that proper filtration can make:

If you’d like to discuss or debate (spoiler alert: I’ll win) the importance of clean air, and how EXAIR can help, give me a call.

Russ Bowman
Application Engineer
Visit us on the Web
Follow me on Twitter
Like us on Facebook

The Case For The Heavy Duty Line Vac

When it comes to conveying bulk materials like pellets, grains, powders, etc., you’ve got plenty of choices:  Mechanical conveyor types, like bucket, auger, and cleated belt conveyors can move product as far as you want, and as quickly as you want…they can be made as long as you want, and as big & fast as you want.  “Fast” as in conveyance rate, that is.  Lead time, including engineering, design, fabrication, and installation, can be months.

Large mechanical conveyors can move tons of material over great distances.

Air operated conveyors are quite popular too, and the dense phase models can move a lot of material a great distance, and quickly.  Like the mechanical types, they have a wide range of economy to scale…and the price tags to prove it.  Medium- and dilute-phase pneumatic conveyors are less complicated in design, which brings us to the heart of today’s blog.

EXAIR Air Operated Conveyors, or Line Vacs, are the simplest of all:  the Line Vac itself used compressed air to generate a “pull/push” to draw material into the suction, and propel it through the discharge.  We have a variety of models to choose from, but our focus today will be the Heavy Duty Line Vac.

EXAIR Heavy Duty Line Vacs are the workhorse of our Air Operated Conveyors product line.  Consider their advantages:

*Made of a proprietary hardened alloy, they offer superior abrasion resistance & durability.  They’re ideal for shot blast and tumbling media…the very stuff that’s MADE to wear metal surfaces down…and it’s no problem for the Heavy Duty Line Vac.

Heavy Duty Line Vac: Hardened Alloy Construction and High Performance

*Heavy Duty also means higher power, which means higher suction heads (up to 2-1/2 times increase) and conveyance rates (up to 11 times greater.)  Oh, and that blasting shot & tumbling media I mentioned?  Standard dilute-phase conveyors may have trouble moving that at all.

*Like our Standard Line Vacs, the Heavy Duty models’ Kits come with a Mounting Bracket for ease of installation, an Automatic Drain Filter Separator to keep the air clean & dry, and a Pressure Regulator so you can ‘dial in’ the performance you need.

Line Vac Kits come with a Mounting Bracket (not shown,) an Automatic Drain Filter Separator (left,) and a Pressure Regulator (right.) Oil Removal Filters (optional; center) are also available if needed.

*Also like our Standard Line Vacs, the Heavy Duty models use common sized conveyance hose (3/4″ to 3″ ID) and are also available with male NPT threads (3/4″ to 3″ as well) if you want to hard pipe them.

Male NPT Threads make permanent and rigid installation into a piping system a breeze.

If you’re looking for a simple, durable, and powerful conveyor system, look no further than the Heavy Duty Line Vac Give me a call if you’d like to discuss your application and/or product selection.

Russ Bowman

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

Stockpile Conveyor photo courtesy of Peter Craven.  Creative Commons License.

EXAIR’s Cabinet Coolers Meet Specific Environmental Needs

I wrote recently about a “textbook” application for EXAIR Cabinet Cooler Systems…overheating control cabinets on a factory floor, solved quickly & easily with stock product, off the shelf, installed in minutes.

“Well, la-di-da, Russ,” some may say, “You sure knocked that whiffleball out of the park, didn’t you? What about those of us with more complex requirements than a plain Jane electric box on a typical production floor?”

To them, I would say:

1. Yes we did, and thank you for noticing!
And
2. Read on.

EXAIR manufactures, and stocks, a number of special Cabinet Cooler Systems to meet most any need:

Food and pharmaceutical processing areas often call for specific materials of construction. Something that doesn’t corrode, something that isn’t susceptible to surface wear or pitting in a washdown environment…something like Type 316 Stainless Steel. For these cases, we also offer our complete line of NEMA 4X Cabinet Cooler Systems in optional 316SS construction, from 275 Btu/hr (69 Kcal/hr) to 5,600 Btu/hr (1,411 Kcal/hr.) And they’re all in stock.

Of course, other harsh environments, like this outdoor installation at a wastewater treatment plant, also require the highly corrosion resistant properties of 316SS.

EXAIR Cabinet Cooler Systems work best on a sealed enclosure, but sometimes it’s not feasible to completely seal an enclosure – there may be a cable bundle coming through a common penetration, or perhaps the door isn’t fitted with a gasket.  In cases where such equipment still needs to be protected from dust, fumes, or other environmental contaminants, you could always use a Continuous Operation Cabinet Cooler System.  But, if you want to control operating costs with Thermostat Control, our Non-Hazardous Purge option provides a continuous positive flow, even when the internal temperature is below the Thermostat setpoint, to prevent these contaminants from entering.  These are all in stock as well.

Non-Hazardous Purge option is available for any EXAIR Cabinet Cooler System.

When we calculate heat load, we use your Sizing Guide data to determine both internal heat load (generated by the components in the enclosure) and external heat load (generated by the ambient temperature in the area.)  Regardless of the internal heat load, enclosures in extremely hot locations need protection too.  When the ambient temperature will exceed 125°F, a High Temperature Cabinet Cooler System is specified…performance is identical, but they’re outfitted to withstand the higher temperatures for durability and long lasting operation.  This option is offered for all of our Cabinet Cooler Systems 1,000 Btu/hr and higher, and they are also all in stock.

This Dual Cabinet Cooler System protects a critical equipment panel on a hot roll steel line.

No matter the challenges of your facility’s environment, we can help.  Again…all of the above options are in stock, ready for immediate shipment.  What could be better?

Well, actually, we ARE giving away free stuff with Cabinet Cooler System orders through the end of July 2018:

This applies to our standard Cabinet Cooler Systems, as well as those with options for various environmental considerations detailed above.

So…don’t overheat your electronics from the inside, or out, wherever they’re located.  If you’d like to find out more, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter 
Like us on Facebook