Save Compressed Air Energy with Pressure Regulators

Why should you consider a Pressure Regulator when designing your compressed air system? As many know, our products and those of other  product manufacturers have a certain set of specifications regarding performance at stated input pressures. But what if your application doesn’t require that “full, rated performance”? Maybe instead of needing two pounds of force, you only need one pound? Sometimes more force does not produce the desired result for an application. By that, I mean you cause damage to the target or other surrounding items in the application. Or, perhaps blowing too hard (or vacuuming too hard in the case of a Line Vac or E-vac) might cause the vessel or the material you are picking up to collapse or deform (due to too much power).

Regulators catalog
EXAIR offers a range of Pressure Regulators capable of handling air flow of up to 700 SCFM.

There is also the concern about using more energy than one really needs to in order to achieve the desired effect in an application. In other words, if you can achieve your goals with only 40 PSIG, then why would you ever use 80 PSIG to accomplish the goal? By reducing your compressed air from 80 down to 40 PSIG, you can easily reduce the air consumption of the “engineered” solution by another 40% or more.  Once you have installed engineered air nozzles to reduce compressed air on blow off applications, a pressure regulator can fine tune the pressure to save even more energy.

Regulator Internal
Regulator Internals

Then there is the issue of taking advantage of the pressure differential (from 80 down to 40 PSIG) that creates a little bit more air volume capacity. At 80 PSIG, your compressed air to free air volume ratio is 6.4:1. At 40 PSIG, it is only 3.7:1. The net effect is you effectively have an overall larger volume of air you can use for other applications in your facility. By reducing compressed air pressure of your demand applications, you may be able to reduce over all compressor discharge pressure. Reducing compressor discharge pressure by 2 PSIG also reduces required input power by 1 percent – so keep your pressure as low as possible!

Regulating pressure is definitely warranted given the benefits that compliment the operation of the core EXAIR products.

If you need a deeper understanding about how EXAIR’s products can help your application, feel free to contact us and we will do our best to give you a clear understanding of all the benefits that can be had by our products’ use as well as proper implementation of accessory items such as compressed air filters and regulators.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Air Savings Calculator

I received an email from an engineer that was looking at our Super Air Nozzles.  They currently were using four blow-off lines that were made from 6mm ID copper tubes. The system was designed to blow out holes after machining.  The engineer was in charge of the task of optimizing 25 machining stations similar to this one.  He was familiar with EXAIR products from his previous employment, and he recognized the waste of compressed air by using open pipe.  He purchased four Nano Super Air Nozzle, model 1110SS, for a trial.  He was impressed with the performance, the low sound level, and the engineered design in safety.  But, for upper management in his company, he had to show a cost savings in order to change all the stations in the facility.  He asked me to help him in calculating the compressed air savings.

nano nozzle

He gave me some additional details about their application.  He was using the compressed air about 30% of the time throughout an 8 hour day at a pressure of 80 PISG.  He wanted to present the savings per day, week, and year as well as the payback period in his evaluation.  I have performed many of these calculations for other customers and was happy to help.  It is sometimes easier to speak in terms of savings, as everyone can relate to money, especially management.

Knowns:

Flow: 1110SS Nano Super Air Nozzle – 8.3 SCFM at 80 PSIG

Flow:  6mm ID copper tube – 42 SCFM at 80 PSIG

This is where the COST SAVINGS CALCULATOR on our website shines!

The Calculator tells us you will see a ROI (Return on investment) is less than 5 days! And will save you $3,033.00 over a full year on compressed air generation cost alone!

Don’t be fooled by the initial cost of a tube, pipe, drilled holes, or a substandard nozzle.  You can see by the facts above, if you use any additional compressed air in your blow-off application, it will cost you a lot of money in the long run.  If you need any help in calculating how much money EXAIR products can save you, you can use our Air Savings Calculator from our website, or you contact an Application Engineer at EXAIR.  We will be happy to help you.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Which Air Nozzle Is Right For Me?

Well, the obvious answer is, of course, an engineered air nozzle…you’re likely aware of this, or you wouldn’t be reading posts on the EXAIR Corporation blog.  We have no issue with narrowing that down a bit, and saying that the answer is an EXAIR air nozzle.  I bet you knew that was coming as well.  So let’s assume that, because of the cost of compressed air, the potential hazards of its unregulated discharge, and the flat-out racket it can make (unless you do something about it,) you’re looking for something efficient, safe, and quiet.

Now that we’re on the same page, let’s unpack that question.  The nature of the application will let us know the airflow pattern & characteristics (mainly flow & force) that we need.

For example, if you need just a pinpoint of airflow, our Atto Super Air Nozzle blows a 1/2″ diameter pattern at a distance of 3″.  Get a little closer than that, and it’s as tight as you want it to be.  Now, it’s only generating a force of 2oz (at 12″ away) but keep in mind that’s all concentrated in a small fraction of an inch diameter.  Which is plenty for most applications that need that precise of an airflow.

Atto Super Air Nozzle

If you DO need a little more flow & force, our Pico and Nano Super Air Nozzles offer incremental increases in performance.  The pattern starts to widen out, but that’s a function of the increased flow expanding in to atmospheric pressure…it has to go somewhere, you know.  But, again, the closer you get, the more focused the flow is to the centerline of the nozzle.

On the other end of the spectrum are EXAIR’s High Force Air Nozzles.  These are particularly useful for stubborn blowoff applications – a foundry blowing slag off hot strip as it cools, for example.  Our largest of these, a 1-1/4 NPT model, generates 23 lbs of force…that’s over 25 times the power of our standard Super Air Nozzle.

 

With 23 lbs of hard hitting force, this 1-1/4 NPT Super Air Nozzle is perfect for the most extreme blow off and cleaning jobs.

Speaking of the standard Super Air Nozzle, it’s the most popular answer to the Big Question.  It’s suitable for a wide range of blowoff, drying, and cooling applications, like the kinds of jobs an awful lot of folks use open end blowoff devices on.  Open ended tubes blow out a great amount of air, but they’re wasteful and noisy, and OSHA says you can’t use them unless you regulate the pressure to 30psig…where they’re not even going to be all that effective.

Choose from (top left to bottom right) 316SS, Zinc Aluminum, or PEEK Thermoplastic…whatever you need to stand up to the rigors of your environment.

If you’ve got a 1/4″ copper tube, for example, it’ll use 33 SCFM when supplied with compressed air at 80psig.  It’ll for sure get the job done (albeit expensively, when you think of all that compressed air consumption,) but it’ll be loud (likely well over 100 dBA) and again, OSHA says you can’t use it at that pressure.  So, you can dial it down to 30psig, where it’ll be marginally effective, but it’s still going to use more air than the Model 1100 1/4 NPT Super Air Nozzle does at 80psig supply pressure.  The hard hitting force of the Model 1100, under those conditions, will make all the difference in the world.  As will its sound level of only 74 dBA.  Not to mention, it’s fully compliant with OSHA 1910.242(b).  Oh…and you can even install it directly on the end of your existing tube with a simple compression fitting.

One of our customers installed Model 1100 Super Air Nozzles on all their lathe blowoff copper tubes, and saved almost $900 a year in compressed air costs.

We’ve also got engineered Air Nozzles smaller than the 1100 (all the way down to the aforementioned Atto Super Air Nozzle) and a good selection of larger ones, including Cluster Air Nozzles that hold tighter airflow patterns than similar performing single Super Air Nozzles.  They’re available in materials ranging from Zinc-Aluminum alloy, bare aluminum, brass, 303SS, 316SS, or PEEK thermoplastic polymer to meet the requirements of most any area of installation, no matter how typical or aggressive.

If you have an loud, wasteful, and likely unsafe blowoff, you owe it to yourself and everyone else who has to put up with it to consider a better solution.  Call me; let’s talk.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Controlling Compressed Air can be Easy, and Save Thousands of Dollars

The history of automated controls can be traced back to inventors in ancient Greece & Egypt, who sought ways to keep more accurate track of time than afforded by sundials and hourglasses.  Their efforts, dating as far back as 300BC, produced devices actuated by water flow, which is actually quite reliable and repeatable: a set amount of water will flow via gravity through a fixed conduit in the exact same amount of time, every time.  These were in fairly common use until the invention of the mechanical clock in the 14th century.

The Industrial Revolution grew the need for automated processes exponentially…the need to control objects or tooling in motion, fluid flow, temperature, and pressure, just to name a few.  As time passed, the sky was literally the limit: modern aircraft & spacecraft rely on a staggering amount of automated processes from production to operation.

All throughout history, though, the benefits of automation remain the same: making processes more efficient.  That’s where the EXAIR EFC Electronic Flow Control comes in, for automating processes involving compressed air use, by turning air flow off when it’s not needed.  In fact, not only do they provide simple on/off control to blow only when a part is “seen” by the photoelectric sensor, there are eight distinct modes to incorporate delay on or off, flicker on or off, signal on/off delay, interval, or “One-Shot,” where the sensor detects the part, delays opening the valve per the timer setting, and blows for one second.

EFC Electronic Flow Control Systems are already assembled & wired for quick & easy installation.

The EXAIR EFC Electronic Flow Control is a true “plug and play” solution for automating a compressed air application.  Mount the sensor, plumb the valve, plug it in, and you’re ready to go.  There’s no complicated PLC wiring or programming, although the aforementioned mode selections do offer a great deal of flexibility other than “on when the sensor sees it; off when it doesn’t” operation, if desired.  Here are some prime examples of that flexibility, and the monetary benefits due to the compressed air consumption savings:

(Left) On/Off Delay setting used in tank refurbishment application to operate a “halo” of Super Air Knives for blow off as tanks exit oven where old paint is burnt off – $3,393 annual air savings. (Center) Interval setting actuates a Super Ion Air Knife for flat panel display dust blow off/static elimination – $2,045 annual air savings. (Right) Interval setting actuates a “halo” of Super Ion Air Knives to clean & remove static charge from plastic automotive bumper covers prior to painting – $5012 annual savings.

If you’d like to find out more about the EFC Electronic Flow Control can save you time, air, and money, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Ion Air Jet Applications

While writing my blog last week on all of the features & benefits of the Gen4 Ion Air Jet, I couldn’t help but think of some of the very interesting and successful uses I’ve seen in my nine years (as of this past Monday) as an Application Engineer at EXAIR Corporation.  In honor of my workaversary, this week’s edition is Russ’ Top 9 Ion Air Jet applications:

  1. A medical device manufacturer uses Ion Air Jets to remove dust from plastic extrusion as it goes through a puller belt.  The small diameter (0.05″ to 0.10″) made the Ion Air Jet a more efficient fit than the Super Ion Air Wipe, which is commonly used for extrusions like this, but is most effective for larger diameters.
  2. A maker of large scale automated machinery has provided Ion Air Jets (as well as other EXAIR quiet, efficient, and safe compressed air products) on machines they’ve been selling their customers for years.  When they started machining their own plastic parts, the Ion Air Jet was their first thought for a solution when plastic chips started sticking to their drill bits.
  3. A commercial printer makes displays, signs, etc. from a variety of static-prone materials such as acrylic, polycarbonate, and styrene.  They use CNC routers to cut them to size & shape, form the edges, and add dimensional detail.  Ion Air Jets blow the dust & shavings away, and keep them away, greatly reducing the prep time between routing and assembly.
  4. A weather sealing/stripping manufacturer uses Ion Air Jets to remove statically charged dust from their rubber & foam product extrusions, allowing for increased line speeds and better cuts for the products they cut for specific seal packages for the residential & commercial door and automotive industries, among others.
  5. A major provider of electrical and electronic contactors uses Ion Air Jets to blow off contact strip as it rolls off large reels to remove protective film and static.
  6. A manufacturer of wire marking machinery installs Ion Air Jets on their machines that are used to print on products with especially static-prone jackets, to ensure clean and crisp markings
  7. A cable manufacturer that caters to the computer & electronic industries uses Ion Air Jets to remove static & dust as foil is applied to PVC coated wire.  This eliminates the static charge that was causing inconsistencies when the adhesive was heated to activate.
  8. A wholesale food equipment distributor uses Ion Air Jets to blow out bottles during the sterilization process, prior to filling.
  9. A maker of specialty polymers uses Ion Air Jets to keep fine powders from accumulating in the entries into their hoppers.

Some applications call for a fixed-in-place solution, like the (above, from left) Super Ion Air Knife, Super Ion Air Wipe, Ion Air Jet, and Ion Air Cannon.) Others are best suited to the hand-held convenience of the Ion Air Gun.  Whatever your static problem is, though, EXAIR has a solution for you!

If you have a problem with static, the Ion Air Jet is just one of the solutions EXAIR Corporation can provide.  If you’d like to find out more about how we can help, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Static Eliminators: Ion Air Jet

Static charge causes a variety of problems & challenges in industrial applications:

  • It “zaps” operators who have to handle statically charged materials.
  • It makes sheets and films cling to each other.
  • It can cause tearing or jamming of those sheets and films as well.
  • Objects with high static charges can cause sensors or sensitive electronics to malfunction, and it the charge is high enough, even damage them.
  • It makes dust cling to parts and material that you want to keep clean.
  • It can lead to uneven or spotty coverage if the statically charged piece is to be painted, coated, printed on, etc.

Good news is, static charge is pretty easy to dissipate, and EXAIR Corporation offers a number of solutions that are simple to install and easy to operate.  Among them is the Gen4 Ion Air Jet.

The Gen4 Ion Air Jet generates a concentrated flow of ionized air, which is ideal when you need to focus on a specific spot without disturbing anything in the surrounding area.  They’re quiet, efficient, and OSHA compliant.  They are also available with a number of options to further simply installation & operation:

If you can hard plumb an air pipe directly, the Gen4 Ion Air Jet is ready to go, right out of the box.

Ion Air Jet

The Gen4 Stay Set Ion Air Jet includes a Magnetic Base and 12″ Stay Set Hose, for quick setup and easy aiming of the ionized air flow, exactly where you want it.

The Magnetic Base and Stay Set Hose make it a breeze to mount & aim your Ion Air Jet.

The Gen4 Instant Static Elimination Station adds a foot pedal and two 10ft compressed air hoses, perfect for hands-free on/off operation.

For a total hands-free solution, look no further than the Model 8910 Instant Static Elimination Station.

The Gen4 Deluxe Stay Set Ion Air Jet Kit adds an Automatic Drain Filter Separator and Pressure Regulator so you can keep your air supply clean & moisture free, and dial in the flow & force of the ionized air stream, from a breeze to a blast, or anywhere in between, depending on the needs of your application.

The Model 8495-9362 Deluxe Stay Set Ion Air Jet Kit has everything you need, right out of the box.

We offer two Power Supply options: the Model 7960 has two ports, which will operate any two EXAIR Static Eliminator Products, and the Model 7961 has four ports, to operate up to four Static Eliminators.  They’re switchable for operation with either 115VAC or 230VAC, and come with both cables for your convenience.

Model 7960 Gen4 Power Supply (top) has two ports; Model 7961 (bottom) has four, depending on how many Static Eliminators you wish to operate from the same Power Supply

The Gen4 Ion Air Jet is just one of EXAIR Corporation’s eight distinct lines of Static Eliminator Products.  If you’ve got a problem with static charge, we can help.  Give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

EXAIR Air Nozzles And Jets: Quiet, Efficient, and Safe Solutions For Blow Off

Compressed air, as a utility, dates back to ancient Egypt, where metal alloy production was enhanced by using bellows devices to force air into furnaces in order to generate the extremely high temperatures needed to meld iron ores.  Major industrial use began in the mid-19th century, as pneumatic drills became popular for tunneling and mining operations.  With the development and large scale production of the modern air compressor in the 20th century, many other uses for compressed air were discovered.

Among the most prevalent of these additional applications is cleaning & blow off.  Mechanical or chemical methods such as washing, scrubbing, brushing, wiping, etc. often take time and considerable effort, when a quick blast of high velocity air from a pressurized source can make quick work of debris and/or moisture removal.  Thing is, unfettered discharge of high pressure air without concern for safety or efficiency has consequences:

  • Open end blow offs without a relief path for the air in case the device is dead ended, can have enough energy to break the skin, causing a dangerous and potentially fatal condition known as an air embolism.  The Occupational Safety and Health Administration (OSHA) specifically addresses this danger in 29 CFR 1910.242(b).
  • They’re also incredibly loud, usually higher than 100 decibels, which exceeds OSHA’s noise exposure limits per 29 CFR 1910.95(a).
  • As if that wasn’t enough, they can waste an awful lot of compressed air too.  The U.S. Department of Energy even goes so far as to classify it as an Inappropriate Use of Compressed Air.

Given these drawbacks, you might wonder why ANYONE would do such a thing!  Well, that’s the nature of our business at EXAIR Corporation: manufacturing quiet, safe, and efficient compressed air products for industry.  Among these are the first engineered products developed by EXAIR:  Air Nozzles and Jets.  No matter what your blow off needs are, we’ve got a solution.  Consider:

  • Performance.  With 73 distinct models to choose from, EXAIR can provide blow off solutions from the pin-pointed precision of our Atto Super Air Nozzle (uses 2.5 SCFM, generates 2 oz of force) to our High Force 1-1/4 NPT Super Air Nozzle (uses 460 SCFM, generates 23 lbs of force.)

    From the Atto Super Air Nozzle’s 2.5 oz pinpoint focus of air flow to the Model 1121’s 23 pounds of force blast, EXAIR has 73 distinct models to choose from.
  • Durability.  Some environments where blow off is required are downright aggressive: high heat, exposure to corrosive chemicals, etc.  With these situations in mind, we offer Air Nozzles & Jets in a variety of materials of construction, as shown to the right:
    • Zinc Aluminum alloy
    • Types 303 and 316 Stainless Steel
    • PEEK (polyether ether ketone) thermoplastic
    • Aluminum
    • Brass
  • Range of operation.  Any blow off device’s performance can be varied by regulating the compressed air supply pressure.  EXAIR offers several products with even greater ability for change:
    • The Model 1009 (Aluminum) and 1009SS (303SS) Adjustable Air Nozzles have a micrometer-like dial that allows you to very precisely set the flow & force to exact requirements.
    • Adjustable Air Jet Models 6019 (brass) and 6019SS (303SS) feature similar operation with a micrometer-like gap adjuster/indicator.
    • Our 1″ and 2″ Flat Super Air Nozzles (available in Zinc Aluminum or 316SS) have a replaceable shim.  The standard models have a 0.015″ thick shim installed, and the High Power models have 0.025″ thick shims.  We also offer individual shims, and sets, ranging from 0.005″ to 0.030″ thicknesses.
    • High Velocity Air Jets come in brass or 303SS, and also have replaceable shims.  The one that comes installed is 0.015″ thick.  The Shim Set gives you a 0.006″ and 0.009″ shim.

      Adjustable Air Nozzles & Jets (left) feature micrometer-type adjustment; Flat Super Air Nozzles and the High Velocity Air Jet (right) have replaceable shims to vary performance.
  • Function. Most of our Air Nozzles generate a high velocity air stream coming straight from its end.  We’ve also engineered some nozzles for specific applications:
    • Model 1144 2″ Super Air Scraper is our popular 2″ Flat Super Air Nozzle with a corrosion resistant scraper blade, making quick work of removing stubborn materials like tape, gaskets, labels, grease, paint, or sealant.  It’s particularly handy when installed on a Soft Grip Safety Air Gun with an appropriate length of pipe extension.
    • Back Blow Air Nozzles are made to clean out inside diameters or blind holes.  Three sizes are available for ID’s of 1/4″ to 16″.

If you’d like to find out more about how EXAIR Intelligent Compressed Air Products can help you get the most out of your compressed air system, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook