Back Blow Air Nozzles Clean Inside Diameters

They say time flies when you’re having fun. Maybe that’s why I found it a little hard to believe it’s been almost two years since we introduced the Back Blow Air Nozzles. They’ve become yet another “textbook” solution to a great many applications:

*Model 1004SS M4 Back Blow Air Nozzles are used to dry the inside of a closed cylinder after a zinc bonding process.  They’re also fitted to Model 1204SS-12-CS M4 Back Blow Safety Air Gun to remove chips & cutting fluid from freshly cut pipe ends.

*Our Model 1006SS 1/4 NPT Back Blow Air Nozzle won Plant Engineering Magazine’s “Product Of The Year” Bronze Award in 2015, and are successfully employed in a wide range of uses:

  • Blowing out splined bores by a gear manufacturer
  • Quickly cleaning out spindles between tool changes by a CNC machinery operator
  • Removing the last bits of powder from spent toner cartridges by a printing equipment recycler

*The Model 1008SS 1 NPT Back Blow Air Nozzle is becoming famous in hydraulic cylinder repair shops…after a cylinder bore is honed, one quick pass of the powerful blast it produces cleans bores from 2″ to 16″.  We can even put it on the Model 1219SS Super Blast Back Blow Safety Air Gun, with a 1ft, 3ft, or 6ft extension.

EXAIR Back Blow Air Nozzles come in three sizes, for bores from 1/4″ to 16″ in diameter!

If you want to see how they work, check out this video:

I could have sworn Lee Evans just made that video, but apparently, it’s over a year old now.  Time does indeed fly, and I promise we’re having fun!  If you’d like to find out more about how a Back Blow Air Nozzle – or any of our engineered compressed air products (old or new) – can make your operations quieter, more efficient (and hence, probably, more fun,) give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Keys to an Efficient Compressed Air System

How do I make our compressed air system efficient?

This is a critical question which plagues facilities maintenance, engineering, and operational personnel.  There are concerns over what is most important, how to approach efficiency implementation, and available products/services to assist in implementation.  In order to address these concerns (and others), we must first look at what a compressed air system is designed to do and the common disruptions which lead to inefficiency.

The primary object of a compressed air system is to transport the compressed air from its point of production (the compressors) to its point of use (applications) in sufficient quantity and quality, and at adequate pressure for proper operation of air-driven devices.[1]  In order for a compressed air system to do so, the compressed air must be able to reach its intended destination in proper volume and pressure.  And, in order to do this, pressure drops due to improper plumbing must be eliminated, and compressed air leakage must be eliminated/kept to a minimum.

But, before these can be properly addressed, we must create a pressure profile to determine baseline operating pressures and system needs.  After developing a pressure profile and creating a target system operating pressure, we can move on to the items mentioned above – plumbing and leaks.

Proper plumbing and leakage elimination

The transportation of the compressed air happens primarily via piping, fittings, valves, and hoses – each of which must be properly sized for the compressed air-driven device at the point of use.  If the compressed air piping/plumbing is undersized, increased system (main line) pressures will be needed, which in-turn create an unnecessary increase in energy costs.

In addition to the increased energy costs mentioned above, operating the system at a higher pressure will cause all end use devices to consume more air and leakage rates to increase.  This increase is referred to as artificial demand, and can consume as much as 30% of the compressed air in an inefficient compressed air system.[2]

But, artificial demand isn’t limited to increased consumption due to higher system pressures.  Leaks in the compressed air system place a tremendous strain on maintaining proper pressures and end-use performance.  The more leaks in the system, the higher the main line pressure must be to provide proper pressure and flow to end use devices.  So, if we can reduce leakage in the system, we can reduce the overall system pressure, significantly reducing energy cost.

 

How to implement solutions

Understanding the impact of an efficient compressed air system is only half of the equation.  The other half comes down to implementation of the solutions mentioned above.  In order to maintain the desired system pressure we must have proper plumbing in place, reduce leaks, and perhaps most importantly, take advantage of engineered solutions for point-of-use compressed air demand.

The EXAIR Ultrasonic Leak Detector being used to check for leaks

Once proper plumbing is confirmed and no artificial demands are occurring due to elevated system pressures, leaks in the system should be addressed.  Compressed air leaks are common at connection points and can be found using an ultrasonic noise sensing device such as our Ultrasonic Leak Detector (ULD).  The ULD will reduce the ultrasonic sound to an audible level, allowing you to tag leaks and repair them.  We have a video showing the function and use of the ULD here, and an excellent writeup about the financial impact of finding and fixing leaks here.

The EXAIR catalog – full of engineered solutions for point-of-use compressed air products.

With proper plumbing in place and leaks fixed, we can now turn our attention to the biggest use of compressed air within the system – the intended point of use.  This is the end point in the compressed air system where the air is designed to be used.  This can be for blow off purposes, cleaning, conveying, cooling, or even static elimination.

These points of use are what we at EXAIR have spent the last 34 years engineering and perfecting.  We’ve developed designs which maximize the use of compressed air, reduce consumption to absolute minimums, and add safety for effected personnel.  All of our products meet OSHA dead end pressure requirements and are manufactured to RoHS, CE, UL, and REACH compliance.

If you’re interested in maximizing the efficiency of your compressed air system, contact one of our Application Engineers.  We’ll help walk you through the pressure profile, leak detection, and point-of-use engineered solutions.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

 

[1] Compressed Air Handbook, Compressed Air & Gas Institute, pg. 204

[2] Energy Tips – Compressed Air, U.S. Department of Energy

Super Air Knife Plumbing Kit Allows Installation In Tight Quarters

I recently had the pleasure of helping a long-time user of our Super Air Knives with a challenging application. They already use quite a few of our Model 110012SS 12″ Stainless Steel Super Air Knives to clean & dry their nonwoven material as it’s being rolled for packaging. They like them because they’re quiet and efficient, but also because they’re durable…this particular product off-gasses a mildly corrosive vapor, which used to corrode other equipment in the area. Not only does the Stainless Steel Super Air Knife resist corrosion itself, the air flow keeps these vapors contained. Two birds, one stone.

They have a new product…same kind of material, but much wider…that needed to be blown off, and the identified the Model 110060SS 60″ Stainless Steel Super Air Knife as a “no-brainer” solution. Thing is, it had to be a pretty even air flow across the length, and a 60″ Super Air Knife has to get air to four ports across its length for optimal performance. And, they wanted to install it at a point where it would serve not only as a blow off, but as a vapor barrier, just like the 12″ Super Air Knives they’re already so fond of. The space was a little limited, though, so they opted for the Model 110060SSPKI 60″ Stainless Steel Super Air Knife with Plumbing Kit Installed, which allowed them to simply run an air supply line to both ends.

EXAIR SS Super Air Knives can be ordered with a Plumbing Kit installed, or you can easily install a Plumbing Kit on your existing Super Air Knife.

If you want to find out more about an engineered solution for your compressed air application – cleaning, drying, vapor barrier, or all of the above – give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

The Old One-Two: Super Air Knives And Super Air Nozzles

The EXAIR Super Air Knife is THE ideal, efficient, and quiet solution for most any blow off application. We know this for a fact; we’ve been making them for years, folks all around the world have been buying them for years, and they keep coming back for more. They’re popular enough that over the years, we’ve introduced Mounting Systems and Plumbing Kits for ease of installation, and when Coupling Kits (to join multiple Super Air Knives together for greater lengths) became big sellers, we “upped our game” and started making Super Air Knives up to nine feet (108″) long. And certain applications (I’m looking at YOU, lumber and paper industries) order multiples of THOSE, and our Coupling Kits. Quite literally, there’s no job too big for EXAIR Super Air Knives.

EXAIR Super Air Knifes come in a wide variety of lengths to suit a wide range of applications.

No matter how long they are, though, the laminar, high velocity curtain of air they generate only moves in one direction. So, if there are significant geometric features (holes, bosses, recesses, “nooks & crannies,” etc.) to be blown off, we’ll have to look at something supplemental.

Enter the EXAIR Blowoff Systems…it doesn’t get any easier than this: an EXAIR engineered Super Air Nozzle, attached to a flexible, repositionable Stay Set Hose, mounted to a Magnetic Base.  Put a hard hitting, high velocity, pointed flow of air right where you want it.  If the next piece is different, that’s no problem – just bend the hose to re-aim the air flow.

Mag Bases come with one or two outlets. Stay Set Hoses come in lengths from 6″ to 36″.

No matter what the requirements of your blow off application are, we have an efficient, quiet, and safe solution.  If you’d like to find out more, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Custom Air Amplifiers To Meet Most Any Requirement

When I think of “special” in regard to Air Amplifiers, I’m more inclined to think of the applications they can be used in. I mean, the Air Amplifier itself is about as straight-forward as an engineered compressed air product can be:

Air Amplifiers use the Coanda Effect to generate high flow with low consumption.

Considering the simplicity of the product itself, they can be used for a large variety of “typical” applications:

  • Cooling
  • Drying
  • Cleaning
  • Ventilation
  • Fume Exhausting
  • Dust Collection

There are no shortage of “special” applications either.  They’re used successfully in Air Operated Conveyance applications (when the stronger vacuum head of a Line Vac isn’t required) and we’ve even got a customer who uses one instead of an E-Vac Vacuum Generator for a “pick & place” operation…they’re picking up small, porous fiber discs (sort of like a coffee filter) one at a time, and the E-Vac wanted to pick up a good part of the whole stack, no matter how low they turned the pressure.  And of course, I can’t think of anything more special about Air Amplifiers than this:

You have to read it to believe it.  Follow the link and click on “Case Study: Roaring Banana Breath”

With fifteen distinct models to choose from in a range of sizes (3/4″ to 8″,) materials (aluminum or Stainless Steel) and even a High Temperature model that’s rated to 700°F (374°C), we’ve still made a fair number of Custom Air Amplifiers too…thirty-four, to be exact, as of this writing.

I won’t bore you with all the details – I can’t, actually, because some of them are proprietary* – but here are some “regular” examples of “special” accommodations:

  • Connections: EXAIR Air Amplifiers have smooth bores on the inlet & outlet plenums that you can hose clamp a hose (or round duct) to if you need to get air flow from, or to, one place or another.  Sometimes, though, they’re going in to an existing system, so we’ve made them with flanges (150#RF and Sanitary Tri-Clamp, for example) or threads (NPT or BSPP.)  If you want to use something other than a standard hose or duct line, we can help.
  • Material of construction: Our durable, lightweight aluminum Super & Adjustable Air Amplifiers are just fine an awful lot of the time.  Our type 303 Stainless Steel Adjustable Air Amplifiers will hold up to heat and corrosives.  We’ve also in PTFE (Teflon™) as well as a range of metal alloys to meet specific corrosion or wear conditions.  If your environment calls for a little something extra, we can help.
  • Assembly: Super Air Amplifiers are fitted with a stock shim that gives you published performance.  We’ve got other thicknesses, though, if you need more (or less) flow, though.  Adjustable Air Amplifiers are, well, adjustable…you just thread the plug in/out of the body until you get the results you want.  Sometimes the user knows what shim they want in a Super Air Amplifier, or what gap their Adjustable Air Amplifier needs to be set to, and we can assemble it accordingly.  If you have a ‘tried-and-true’ performance setting and want it met right out of the box, we can help.
  • Assembly, part 2: Good engineering practices call for lubrication on O-rings and threaded connections, and we use high quality, general purpose compounds when assembling our Air Amplifiers.  These are detrimental, however, in certain situations (silicone exclusion areas, I’m looking at you.) If certain chemicals or compounds are prohibited by your application, we can help.

*Let’s say you’ve done the “heavy lifting” to call out one (or more) of these special design features.  If we make a custom product (and that’s not just Air Amplifiers, by the way) using directions based on your time and labor, we’ll treat that product as proprietary to you, and you alone.

EXAIR has 208 catalog pages worth of Intelligent Compressed Air Products on the shelf…8 of those pages are our Air Amplifiers.  If you want to talk about customizing one to meet your needs, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

About Double Acting Reciprocating Air Compressors

My colleague, Lee Evans, wrote a blog “About Single Acting Reciprocating Compressors”, and I wanted to extend that conversation to a more efficient relative, the double acting reciprocating compressor.   As you see in the chart below, this type of compressor falls within the same family under the category of positive displacement compressors.

Compressor Types

Positive displacement compressors increase air pressure by reducing air volume within a confined space.  The reciprocating type of air compressor uses a motor that turns a crank which pushes a piston inside a cylinder; like the engine in your car.  In a basic cycle, an intake valve opens to allow the ambient air into the cylinder, the gas gets trapped, and once it is compressed by the piston, the exhaust valve opens to discharge the compressed volume into a tank.  This method of compression happens for both the single and double acting reciprocating compressors.  With a single acting compressor, the air is compressed only on the up-stroke of the piston inside the cylinder.  The double acting compressor compresses the air on both the up-stroke and the down-stroke of the piston, doubling the capacity of a given cylinder size.  This “double” compression cycle is what makes this type of air compressor very efficient.  A single acting compressor will have an operating efficiency between 22 – 24 kW/100 cfm of air while the double acting compressor has an operating efficiency between 15 – 16 kW/100 cfm.  Therefore, electricity cost is less with a double-acting reciprocating air compressor to make the same amount of compressed air.

To explore the internals a bit closer, the mechanical linkage used to move the piston is slightly different as well as the additional intake and exhaust valves.   Instead of the connecting rod being attached directly to the piston as seen inside a single acting compressor, a crosshead is added between the compression piston and the connecting rod (view picture below).  The rod that connects the crosshead to the compression piston can be sealed to keep the cylinder completely encapsulated.  For every rotation of the electric motor, the air is being compressed twice.  With the added heat of compression, the double acting compressors are generally water-cooled.  Also, with the added mechanism between the crank and the piston, the rotational speeds are typically less.  Because of the larger size, water jackets, and added parts, the initial cost is more expensive than the single acting compressor, but the efficiency is much higher.

Double Acting Reciprocating Air Compressor

Double acting compressors are generally designed for rugged 100% continuous operations.  Dubbed the work horse of the compressor family, they are also known for their long service life.  They are commonly used in high pressure services in multistage styles and can come in lubricated and non-lubricated configurations.   With the dual compression, slow speed and inter-cooling, it makes this type of air compressor very proficient in making compressed air.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Photos:  used from Compressed Air Challenge Handbook

Methods Of Heat Transfer

“Nothing happens until something moves.”
-Albert Einstein

These five words are the foundation on which the science of physics is built upon. This statement not only applies to the things we can see, but to those we can’t…like heat transfer.

OK; technically, we CAN visually observe the EFFECTS of heat transfer…that’s called “reading a thermometer.” But the actual mechanism of heat transfer takes place at a molecular level, and concerns the rate of motion of those molecules: the higher the rate of molecular motion, the higher the heat of the material. Hence, the higher the rate of CHANGE of that molecular motion, the higher the heat transfer rate is.

All you need for heat transfer to occur is a difference in temperature between two materials. Contact, or even proximity, helps…but not always. More on that in a minute. And keeping at least one of the materials in motion can help maintain the temperature differential. We’ll unpack that a little more too.

Let’s start with the three ways that heat is transferred…what they are, and how they work:

Conduction

What it is: The transfer of heat between materials that are in physical contact with each other.

How it works: If you’ve ever touched a hot burner on a stove, you’ve successfully participated in the process of conduction heat transfer.

Convection

What it is: The transfer of heat through a fluid medium, enhanced by the motion of the fluid.

How it works: If you’ve ever boiled water in a pan on a hot stove burner, you’ve successfully participated, again, in the process of conduction heat transfer (as the burner heats the pan) AND convection (as the heated water in the bottom of the pan both transfers heat through its volume, and moves to the surface.)

Radiation

What it is: Remember what I said earlier about how you don’t always need contact or proximity for heat transfer? Well, this is it…the transfer of heat through empty space, via electromagnetic waves.

How it works: If you didn’t actually TOUCH the hot stove burner, but felt your hand getting hot as it hovered, then you’ve successfully participated in the process of radiation heat transfer. OK; it’s a little convection too, since the air between the burner and your hand was also transferring some of that heat. The best example of STRICTLY radiation heat transfer I can think of is the sun’s rays…they literally pass through 93 million miles of empty space, and make it quite warm on a nice sunny day here on Earth.

Regardless of how material, or an object, or a system receives heat, engineered compressed air products can be used to efficiently and effectively remove that heat.  For the record, they employ the principles of both conduction and convection.  If you’d like to discuss a heat transfer application, and the way(s) that an EXAIR product can work in it, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

%d bloggers like this: