Compressed Air Pressure Regulators Conserve And Protect

Imagine you’re enjoying a nice shower. A cascade of warm water is soothing your body – and spirit – then, someone starts the dishwasher. Or a load of laundry. Or flushes the toilet. Suddenly, the “soothe” turns to “scald” or “freeze,” depending on whether you’ve been robbed of hot, or cold water.  So, what happened?

What happened is, all of those “loads” on your house’s water supply that can ruin your shower experience are controlled by simple on/off valves…they open to permit a certain amount of water FLOW to pass.  When the dishwasher starts, or someone decides to wash a load of whites, the HOT water from your nice warm shower is diverted, leaving a stream of cold water.  When a toilet flushes, or it’s a load of colors, the COLD water is diverted…and that’s not just unpleasant, but downright painful.  Either way, (in my house anyway,) a teenager is getting read the riot act.

The same phenomenon can apply in a compressed air system, if simple flow control valves are used to throttle the appropriate supply of air to a pneumatic device.  If someone, for example, hooks up an air gun to blow off their tools or parts, the valves on EVERYTHING else will need to be opened up some to keep those devices working the same.  In the case of an air gun like this, it usually happens too quick to make the necessary adjustments (by hand) and you’re probably left with a machine tripped off-line, or a ruined part.

Pressure Regulators can prevent this by keeping (or regulating) their downstream pressure to a set value.  If a load elsewhere in the system is activated, the Pressure Regulator opens up, automatically, to keep its output constant.  When that load is secured, the Pressure Regulator closes back down accordingly.  Either way, no single load affects the operation of any others.

That’s only half the value of the use of Pressure Regulators, though.  The other half is, well…the value.  Just looking at a typical function of many EXAIR Intelligent Compressed Air Products – blow off – they’ll all pretty much accomplish the task if you run them, unrestricted, straight off your header.  That’ll give you a good, strong blast of air flow…and it may be more than what’s required, and a waste of good air.  Pressure Regulators will prevent this by allowing you to “dial in” the supply pressure to whatever it takes to get the job done, and no more.

EXAIR offers a range of Pressure Regulators capable of handling air flow of up to 700 SCFM.

Compressed air isn’t free.  Heck, it isn’t even cheap.  Don’t use any more than you have to, and get the most out of what you do use.  Pressure Regulators are one important step in doing this.  If you’d like to talk about optimizing your use of your compressed air system, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

The Value Of A Pressure Regulator At Every Point Of Use

regulator
EXAIR Pressure Regulator

To understand the value of a having a Pressure Regulator at every point of use we should start with identifying the two types of Pressure Regulators, Direct Acting & Pilot Operated.  Direct Acting are the least expensive and most common (as shown above), however they may provide less control over the outlet pressure, especially if they are not sized properly.  However when sized properly they do an outstanding job.  Pilot Operated Regulators incorporate a smaller auxiliary regulator to supply the required system pressure to a large diaphragm located on the main valve that in turn regulates the pressure.  The Pilot Operated Regulators are more accurate and more expensive making them less attractive to purchase.  The focus of this Blog will be on the Direct Acting Pressure Regulator.

The Direct Acting Pressure Regulator is designed to maintain a constant and steady air pressure downstream to ensure whatever device is attached to it is operated at the minimum pressure required to achieve efficient operation.  If the end use is operated without a regulator or at a higher pressure than required, it result’s in increased air demand and energy use. To clarify this point, if you operate your compressed air system at 102 PSI it will cost you 1% more in electric costs than if the system was set to run at 100 PSI! Also noteworthy is that unregulated air demands consume about 1% more flow for every PSI of additional pressure.  Higher pressure levels can also increase equipment wear which results in higher maintenance costs and shorter equipment life.

Sizing of the Air Regulator is crucial, if it is too small to deliver the air volume required by the point of use it can cause a pressure drop in that line which is called “droop”.  Droop is defined as “the drop in pressure at the outlet of a pressure regulator, when a demand for compressed air occurs”.  One commonly used practice is to slightly oversize the pressure regulator to minimize droop.  Fortunately we at EXAIR specify the correct sized Air Regulator required to operate our devices so you will not experience the dreaded “droop”!

Standard Air Knife Kit
EXAIR Standard Air Knife Kit Which Incudes Shims, Properly Sized Pressure Regulator & Filter Separator

Another advantage to having a Pressure Regulator at every point of use is the flexibilty of making pressure adjustments to quickly change to varying production requirements.  Not every application will require a strong blast sometimes a gentle breeze will accomplish the task.  As an example one user of the EXAIR Super Air Knife employs it as an air curtain to prevent product contamination (strong blast) and another to dry different size parts (gentle breeze) coming down their conveyor.

EXAIR products are highly engineered and are so efficient that they can be operated at lower pressures and still provide exceptional performance!  This save’s you money considering compressed air on the average cost’s .25 cents per 1000 SCFM.

Super Air Knife Performance
EXAIR Super Air Knife Performance Specifications At 5 Different Pressures.

If you would like to discuss Air Regulators or quiet and efficient compressed air devices, I would enjoy hearing from you…give me a call.

Steve Harrison
Application Engineer
Send me an email
Find us on the Web 
Follow me on Twitter
Like us on Facebook