Undersized Regulators Create Performance Problems with Compressed Air

“I have a Cabinet Cooler installed on my panel but it isn’t getting the temperature down cold enough. Can you quote me for a duplicate system to install on this panel?” This was a recent inquiry from a customer regarding an electrical enclosure that they had installed in their plant. The Cabinet Cooler was producing cold air, but not enough to keep the cabinet at their desired temperature. It would seem logical that they need additional capacity, right? While that could be the case, in this instance it most definitely was not.

When we get questions like this, we first want to take a closer look at the current installation. The cooling capacity for each system is published in our catalog. BUT, in order to rate a cooling capacity for any type of cooling system, some assumptions must be made. All Cabinet Coolers are specified with 70°F compressed air fed to the Cabinet Cooler at a pressure of 100 PSIG. In addition, each cooler has a specified volume of air that it must utilize in order to produce that rated cooling capacity. If any one of those parameters change, so does the overall cooling power.

In this particular case, the customer had installed a non-EXAIR pressure regulator just upstream of the cooler. Upon looking at the specifications for this regulator, it was found that the overall volume of air it can deliver was just 10% of the overall volume needed to produce the rated 1700 Btu/hr. They didn’t need another Cabinet Cooler System, they just needed to remove that restriction! Upon learning that it needed 100 PSIG, they removed the regulator and supplied full line pressure. No more heat alarms for that shift!

CC undersized valve

Rather than purchasing and installing an unnecessary system, they were able to get back up and running just by removing the problem upstream. At EXAIR, we want to make sure that you’re getting the most out of our products. Just because you call and inquire about a new purchase doesn’t necessarily mean that you need it. We’re here to help you determine if something is afoul with the current setup and make sure you have all of the knowledge necessary to rectify it.

We’re right in the middle of summer, and boy is it hot out there. If you have panels that are overheating and creating problems for you in your processes, give us a call. With Cabinet Cooler Systems ready to ship same day from stock (with properly sized regulators) you can have it fixed by tomorrow.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Preventative Maintenance for EXAIR Filters

Good engineering practice calls for point of use filtration and moisture removal, such as that provided by EXAIR Filter Separators.

I read a white paper from Parker Hannifin about compressed air filters.  The idea behind the paper was to remember your filter replacements.  Compressed air can be dirty with water, oil, pipe scale, etc.  As the filters capture the contamination, it will start to build pressure drop.  Remember, pressure drop is a waste of energy in your compressed air system.

Majority of EXAIR products use compressed air for cleaning, cooling, conveying, static elimination, coating and more.  To help keep them running efficiently, it is important to supply them with clean, dry, pressurized air.  EXAIR offers a line of Filter Separators and Oil Removal Filters to supply quality air to your equipment.  In this blog, I will explain the two types of filters that we carry and the maintenance requirements.  Filters and preventative measures can play an important part in your compressed air system.

Filter Separators are used to remove bulk liquid and contamination from the compressed air stream.  They utilize a 5-micron filter with a mechanical separation to help remove large amounts of dirt and water.  This type of filter would be considered the minimum requirement for filtration.  Most of the Filter Separators come with an auto-drain to automatically dispense the collection of oil and water.  EXAIR offers a variety of port sizes and flow ranges to meet your pneumatic flow requirement.  For maintenance, the filter elements should be changed once a year or when the pressure drop reaches 10 PSID (0.7 bar), whichever comes first.  I created a list in Table 1 below showing the correct replacement element kits for each model number.  And for any reason, if the bowl or internal components get damaged, we also have Rebuild Kits as well.  Just remember, the air quality is very important for longevity and functionality of your pneumatic systems and even for EXAIR products.

The Oil Removal Filters can make your compressed air even cleaner.  They work great at removing very small particles of dirt and oil.  They are made from glass fibers and can remove particles down to 0.03 micron.  They are designed to collect small particles and to coalesce the liquid particles into a large droplet for gravity to remove.  Because of the fine matrix, Oil Removal Filters are not great for bulk separation.  If you have a system with lots of oil and water, I would recommend to use the Filter Separator upstream of the Oil Removal Filter.  As with the Filter Separator, the filter element should be changed once a year or at a pressure drop of 10 PSID (0.7 bar).  EXAIR also offers a variety of port sizes and flow ranges.  Table 1 below shows the replacement Element Kits as well as the Rebuild Kits.  If the application requires very clean compressed air, the Oil Removal Filter should be used.

Table 1

By using EXAIR filters, they will clean your compressed air to prevent contamination on parts, performance issues, and premature failures.  As an ounce of prevention, you should add the replacement elements in stock and enter them in your preventative maintenance program.  With quality air, your pneumatic system and EXAIR products will provide you with effective, long-lasting performance without any maintenance downtime.  If you would like to discuss the correct type of filters to use in your application, you can speak with an Application Engineer.  We will be happy to help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

Video Blog: Filter/Separator and Pressure Regulator Mounting and Coupling Kit Installation

Using EXAIR mounting and coupling kits you can assemble EXAIR Filters and Regulators into one plug and play assembly. Follow along with the video posted below to complete this task!

If you need a deeper understanding about how EXAIR’s products can be applied and help your process or product, feel free to contact us and we will do our best to give you a clear understanding of the benefits when using our engineered compressed air products. We can also explain proper implementation of accessory items such as compressed air filters and regulators.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Save Compressed Air Energy with Pressure Regulators

Why should you consider a Pressure Regulator when designing your compressed air system? As many know, our products and those of other  product manufacturers have a certain set of specifications regarding performance at stated input pressures. But what if your application doesn’t require that “full, rated performance”? Maybe instead of needing two pounds of force, you only need one pound? Sometimes more force does not produce the desired result for an application. By that, I mean you cause damage to the target or other surrounding items in the application. Or, perhaps blowing too hard (or vacuuming too hard in the case of a Line Vac or E-vac) might cause the vessel or the material you are picking up to collapse or deform (due to too much power).

Regulators catalog
EXAIR offers a range of Pressure Regulators capable of handling air flow of up to 700 SCFM.

There is also the concern about using more energy than one really needs to in order to achieve the desired effect in an application. In other words, if you can achieve your goals with only 40 PSIG, then why would you ever use 80 PSIG to accomplish the goal? By reducing your compressed air from 80 down to 40 PSIG, you can easily reduce the air consumption of the “engineered” solution by another 40% or more.  Once you have installed engineered air nozzles to reduce compressed air on blow off applications, a pressure regulator can fine tune the pressure to save even more energy.

Regulator Internal
Regulator Internals

Then there is the issue of taking advantage of the pressure differential (from 80 down to 40 PSIG) that creates a little bit more air volume capacity. At 80 PSIG, your compressed air to free air volume ratio is 6.4:1. At 40 PSIG, it is only 3.7:1. The net effect is you effectively have an overall larger volume of air you can use for other applications in your facility. By reducing compressed air pressure of your demand applications, you may be able to reduce over all compressor discharge pressure. Reducing compressor discharge pressure by 2 PSIG also reduces required input power by 1 percent – so keep your pressure as low as possible!

Regulating pressure is definitely warranted given the benefits that compliment the operation of the core EXAIR products.

If you need a deeper understanding about how EXAIR’s products can help your application, feel free to contact us and we will do our best to give you a clear understanding of all the benefits that can be had by our products’ use as well as proper implementation of accessory items such as compressed air filters and regulators.

Jordan Shouse
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS