Compressed Air Receiver Tanks On The “Demand” Side

Most any air compressor is going to have a receiver tank…from the “pancake” types that might hold a gallon or so, to the large, multi-tank arrangements that facilitate both cooling and drying of compressed air in major industrial installations.  The primary purpose of these receiver tanks is to maintain proper operation of the compressor itself…they store a pressurized volume of air so that the compressor doesn’t have to run all the time.  Receiver Tanks, however, can also be used to eliminate fluctuations at points of use, especially in facilities where there might be a lot of real estate between the compressor and the compressed air consuming products.

I recently had the pleasure of discussing an Line Vac Air Operated Conveyor application with a caller.  The need was to move wood chips, from inside to outside the plant, into trailers.  The facility has plenty of compressed air to operate the Line Vacs (the application calls for several) but because the point of operation is so far from the header, they’ll need a “stash” (the caller’s words…we call it “intermediate storage” but he’s not wrong) of compressed air to keep the Line Vacs supplied for operation without any dips in performance.

Enter the Model 9500-60 60 Gallon Receiver Tank.  When an application requires an intermittent demand for a high volume of compressed air, the Receiver Tank provides intermediate storage (or a “stash” – that word’s growing on me) to prevent pressure fluctuations and the associated dips in performance.

Model 9500-60 60 Gallon Receiver Tank

The Model 9500-60 has a small footprint for where floor space is at a premium, and meets ASME pressure vessel code specifications. It comes with a drain valve so you can discharge condensate and contaminants.  A check valve (not included) can be installed upstream to maintain the tank at max pressure so it doesn’t ‘back feed’ other upstream uses.

Use of intermediate storage near the point of use is one of our Six Steps To Optimizing Your Compressed Air System.  If you’d like to find out more about getting the most out of your compressed air, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Turn It Off: Saving Compressed Air The Easy Way

A major benefit to utilizing compressed air is the speed at which it can be shut off and re-energized for use – in fact, this can be done instantaneously. Shutting down the supply of compressed air to an application while it is not needed can drastically reduce the compressed air consumption of the process. This is an easy remedy that can produce significant savings.

Think about a place where you have a compressed air blow off with spaces between the parts or dwell times in conveyor travel. What about break times, do operators continue to keep the air on when they leave for a break or even worse, for the day?

Step number four in EXAIR’s Six Steps to Optimization is:

A simple manual ball valve and a responsible operator can provide savings at every opportunity to shut down the airflow. But an automated solution is a no-brainer and can provide significant savings.

Quarter Turn Ball Valves are low-maintenance and easy to install/use.

For a more automated approach, you can add a solenoid valve that would tie into your existing PLC or e-stop circuit, into your compressed air supply lines to aid in turning the compressed air on and off.

For an automated on/off solution can be found by using the EXAIR EFC (Electronic Flow Control). The EFC is made to accept 110V or 220V AC, and convert it to 24V DC to operate a sensor, timer, and solenoid valve. Its multiple operating modes allow you delay on, delay-off, and delay on/off among others. The operating mode can then be set to the specific time necessary for a successful application.

The spaces between parts can be turned into money saved. Every time you reach the end of a batch run, the EFC can turn the air off. You can also add solenoid valves and run them from your machine controls. If the machine is off, or the conveyor has stopped – close the solenoid valve and save the air. The modes are all defined in the video below.

So, take a look, or even better a listen, around the plant and see what you can find that could benefit from turning the air off; even if it is just for a moment it will help put money back into your bottom line.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Compressed Air Supply Side: What Is A Deliquescent Dryer, And When Would You Use One?

As we head in to the colder months here in Ohio, I will soon be getting my humidifier out of the basement and set up in my bedroom. The dry air that accompanies the onset of winter chaps my lips, cracks the skin on my knuckles, affects my nasal passages, and oftentimes makes me wake up with a sore throat…something I definitely don’t want to happen in the middle of a pandemic! So I put some water vapor in my home’s air, on purpose, to take care of all of that.

Moisture in an industrial compressed air system, however, isn’t good for anything.  It’ll corrode your pipes, get rust in your pneumatic tools, motors, and cylinders, and spit out of your blow off devices, all over whatever you’re using your air to blow off.  Depending on the type of compressor, where, and how, it’s used, there are different types of dryers.  Today, dear reader, we’re taking a look at one of the most basic moisture removal systems: the deliquescent dryer.  The principle of operation is as follows:

  • Deliquescent dryer: how it works (1)
    Incoming compressed air enters near the base, where a form of mechanical separation occurs…the air flows back & forth, around trays of desiccant.  The simple act of changing direction causes a certain amount of free liquid to just fall out and collect in the bottom.
  • The air then flows upwards through the desiccant bed. The desiccant in a deliquescent dryer absorbs moisture (as opposed to the adsorption that occurs in a regenerative desiccant dryer) until they get so wet, they dissolve.
  • The desiccant level has to be monitored (commonly via a sight glass) so it can be replaced as it’s consumed.
  • After the desiccant does its job, moisture free air flows out the top, and gets on with it’s work.

Deliquescent dryers, owing to their simplicity, are the least expensive air dryers.  They have no moving parts and no electricity, so the only maintenance involved is replacing the desiccant media as it’s consumed.  This makes them especially popular in mobile/on-site applications involving portable or tow-behind, engine driven compressors, since they don’t need power to run.

There are several disadvantages, also owing to their simplicity:

  • The deliquescent media has to be periodically replenished.  If you don’t stay on top of it, you can find yourself shut down while you go back to the shop to get a big bag of salt.  That’s time your boss can’t charge your customer for.  Also, the cost of the new media is a continual operating cost of the dryer…something you don’t have to account for with the regenerative desiccant models.
  • Disposal of the waste media can be a concern…you definitely want to check your local environmental regulations before dumping it in the garbage.  Your boss won’t like talking to the EPA about THAT either.
  • They have to be equipped with a particulate filter on the discharge to keep the deliquescent media (which, being a salt, is corrosive in nature) from entering your system.  That would be even worse than water moisture…which this is there to prevent in the first place.
  • They don’t get near as low of a dewpoint as other dryers – the best you can hope for is 20°F to 30°F.  Which is fine, given the above mentioned nature of applications where these are commonly used.  You just wouldn’t want to use them to supply a product like an EXAIR Vortex Tube…which can turn that in to -40°F cold air, causing the water vapor to turn to liquid, and then to ice.  In a hurry.

EXAIR Corporation is in the business of helping you get the most out of your compressed air.  If you want to learn more, please follow our blog.  If you have specific questions, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

(1) – Deliquescent Dryer Image: VMAC Air Innovated: The Deliquescent Dryer – https://www.vmacair.com/blog/the-deliquescent-dryer/

EXAIR Celebrates Manufacturing Day With A Win For A Manufacturer

In 2012, the National Association of Manufacturers organized an effort to proclaim the first Friday in October (hey, that’s today!) as Manufacturing Day.  According to the Advanced Manufacturing National Program Office (a division of NIST, the National Institute of Standards & Testing,) the purpose of MFG Day is “to raise awareness among students, parents, educators and the general public about modern manufacturing and the rewarding careers available.”

Today is kind of a big deal around here.  Not only is EXAIR Corporation a manufacturer, but many of the companies that use our products are as well.  A lot of us have a rich story, woven into the cloth of the history of American manufacturing (which, in turn, is woven into the larger cloth of American history.)  Have you heard the one about the motivated inventor with an idea to make innovative products who started an operation out of his home that, with inspired direction & vision, became a worldwide leader in their industry?

Yeah; that’s us.  Today, we’re honoring Roy Sweeney’s legacy (he founded the company in October 1983,) and celebrating MFG Day, by publishing a new Case Study, proving out the benefits of the use of EXAIR Intelligent Compressed Air Products in regard to the monetary savings associated with the reduction in compressed air use, and the noise level reduction from the implementation of our engineered products.

You can download the complete Case Study here, but while we’re on the subject, here’s a basic rundown:

  • A roll forming operation used to blow off their product with a combination of loud and inefficient devices: copper tubing and modular flexible hose which is designed primarily for machine tool coolant, but often misapplied for use with compressed air.
  • It worked just fine, but an engineering study noted it as a potential wasteful use of compressed air.  That’s when they called us.
  • By replacing those blow offs with Model 1100 Super Air Nozzles and Model 1122 2″ Flat Super Air Nozzles, their noise levels dropped from 107 dBA to 83.8 dBA.  To put that in perspective, it went from the approximate sound level of a rock concert to that of a leaf blower. (ref: Centers for Disease Control & Prevention: What Causes Hearing Loss?)
  • Compressed air consumption dropped by more than half, from 190 SCFM to 86.8 SCFM…an annual savings of over $3,200.00.  All for an investment of $654.00 (2020 pricing) for those engineered Air Nozzles, Stay Set Hoses, and Magnetic Bases.  That means they’ll have paid for themselves in just under two months.
  • In addition to that, for participation in this Case Study, we’re giving them a generous credit on their order.  Happy Manufacturing Day!

And frankly, I think the engineered products just look better too.

Last but certainly not least, this reduction in compressed air usage decreases the load on their air compressors, reducing the electrical power consumed.  Product impact, along with our own consumption of resources and waste recycling, is a key component of EXAIR Corporation’s Sustainability Plan.  We’re making the world a better place, by making products that make the world a better place, using methods that make the world a better place.  I can’t think of a better way to celebrate Manufacturing Day.  If you want to get in on it, give me a call.

Russ Bowman
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

 

 

 

MFG Day logo courtesy of nist.gov