Video Blog: EXAIR’s Electronic Temperature Control for Cabinet Coolers

48xx-ETC120
EXAIR NEMA 4X 316SS Cabinet Cooler System with Electronic Temperature Control installed on control panel in a pharmaceutical plant.

Are you concerned about high temperatures this summer causing problems on your control panels? EXAIR’s Electronic Temperature Control (ETC) can be used with an EXAIR Cabinet Cooler to maintain precise control of the temperature inside of the cabinet. The ETC is available in both 110 and 240 VAC and is compatible with all Cabinet Cooler Systems.

After taking a few quick measurements, fill out the Cabinet Cooler Sizing Guide and an Application Engineer will be in touch with you to provide the most suitable system for your conditions. Don’t wait until the heat becomes a major problem, get yourself a Cabinet Cooler installed today and stop worrying about those high ambient temperatures!!

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

 

Advantages of Thermal Mass or Thermal Dispersion Flow Measurement

EXAIR’s Digital Flow Meter offers an easy way to measure, monitor and record compressed air consumption. The Digital display shows the current amount of compressed air flow, allowing for tracking to identify costly leaks and/or inefficient air users.

dfm

How exactly does the Digital Flow Meter work?  The unit falls under the category of Thermal Mass or Thermal Dispersion type flow meters.  Below shows the backside of a unit.

IMG_7387

Thermal mass flow meters have the advantage of using a simple method of measuring flow without causing a significant pressure drop. The EXAIR units have (2) probes that are inserted through the pipe wall and into the air flow.  Each of the probes has a resistance temperature detector (RTD.) One of the probes measures the temperature of the air flow.  The other probe is heated to maintain a preset temperature difference from the temperature measured by the first probe.  The faster the air flow, the more heat that is required to keep the second probe at the prescribed temperature.  From Heat Transfer principles, the heat energy input required to maintain the preset temperature is based on the mass velocity of the air.  Using basic physical properties for compressed air, the volumetric rate can be determined (SCFM), and displayed.

It is important to note that the compressed air should be filtered to remove oils, and dried to remove water, as these liquids have different physical properties from air, and will cause erroneous readings.

Advantages

  • Easy to install – No cutting or welding required
  • Summing Remote Display and Data Logger available
  • Sensitive at low flows
  • Rugged, reliable and no moving parts
  • No calibration or set-up required
  • Models from 1/2″ to 4″ schedule 40 iron pipe in stock
  • Short lead time for sizes up to 6″ Schedule 40 iron pipe
  • Available for size 3/4″ to 4″ copper pipe
  • New Wireless Capability

If you have any questions about the Digital Flow Meter or any of the EXAIR Intelligent Compressed Air® Products, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_BB

Finding and Fixing Leaks in Your Compressed Air System

I had to find and fix some leaks this week – in my yard. See, my underground storm sewer pipe, that carries my basement sump pump discharge and my house’s gutter drains to the street, was leaking.

The evidence was clear…swampy puddles were developing in my neighbor’s yard.

The location was clear…several patches of grass in MY yard were WAY more green and vibrant than the rest.

The cause was NOT clear…until I dug up those patches of the best looking grass my lawn has ever seen. Turns out, my maple tree’s (the showpiece of my front yard) root system found a way to penetrate one of the couplings in the sewer pipe, where it prospered into this:

That’s about 8ft worth of root growth that was clogging my drain pipe, and causing leaks upstream. My maple tree is not shown in the picture because my maple tree is a real jerk.

Two days worth of digging up and reinstalling pipe later, and all is well.  I mean, except for filling the trench, sowing some new grass seed, watching the birds eat it, sowing some more, etc.  Ah, the joys of home ownership…

I tell you all this, dear reader, so you know that I. Don’t. Like. Leaks…whether they be in my storm sewer pipe or in your compressed air system…which brings me to the (real) subject of my blog today.

Unlike the visual indications of my yard leak, compressed air system leaks don’t really draw much attention to themselves.  Unless they grow quite large, they’re typically invisible and very quiet…much too quiet to be heard in a typical industrial environment, anyway.  Good news is, they’re not all that hard to find.

One way is to use a soap-and-water solution.  You just need a spray bottle, some dish soap, and water.  Spray it on the piping joints, and all but the smallest, most minute, of leaks will create soap bubbles…instant indication of air leakage.  This method is inexpensive and simple, but it does tend to leave little puddles all over.  Plus, if your header runs along the ceiling, you’re going to have to get up there to do it.  And unless you can easily maneuver all the way around the pipe, you can miss a leak on the other side of the joint. If you have a small and relatively simple compressed air system, and all your piping is accessible though, this method is tried and true.

For many industrial compressed air systems, though, the limitations of the soap bubble method make it impractical.  But I’ve got more good news: those silent (to us) air leaks are making a real racket, ultrasonically speaking.  And we’ve got something for that:

EXAIR Model 9061 Ultrasonic Leak Detector discovers and pinpoints leaks, quickly and easily.

See, when a pressurized gas finds its way through the narrow (and usually torturous) path out of a slightly loosened fitting, worn packing on a valve, etc., it creates sound waves.  Some of those ARE in audible frequencies, but they’re often so low as to be drowned out by everything else that’s happening in a typical industrial environment.  Those leaks, however, also create sound waves in ultrasonic frequencies…and EXAIR’s Ultrasonic Leak Detector takes advantage of that ultrasonic racket to show you where those leaks are, as well as give you a qualitative indication of their magnitude.  Here’s how it works:

Find leaks and fix them.  This is Step #2 of our Six Steps To Optimizing Your Compressed Air System.  If you’d like to find out more, give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter 
Like us on Facebook

Lower Operating Costs by Minimizing Compressed Air Leaks

Almost every industry uses compressed air in some capacity. It is often referred to as the “fourth utility” In an industrial setting, next to water, gas and electric. and in many cases, is the largest energy user in the plant. With an average cost of $ 0.25 per every 1000 Standard Cubic Feet used, compressed air can be expensive to produce so it is very important to use this utility as efficiently as possible. When evaluating the performance of a compressed air system, it’s important to look at the system as a whole.

When you operate point-of-use devices at a higher pressure than necessary to perform a certain job or function, you are creating “artificial demand”. This results in excess air volume being consumed, increasing the amount of energy being lost to waste. For example, plant personnel or operators increase the supply pressure in an effort to improve the end use devices performance. When there is a leak in the system, the line pressure will actually begin to drop and performance begins to deteriorate in other areas in the plant. This not only puts stress on the existing compressor but it also leads to the false idea that a larger or secondary compressor is needed.

Here’s a quick reference on how operating pressure can directly affect operating cost:


Our Model # 1101 Super Air Nozzle requires 14 SCFM @ 80 PSIG. Based on the average operating cost of $ 0.25 per 1000 SCF used, it would cost $ 0.21 per hour to operate this nozzle. (14 SCFM x $ 0.25 x 60 minutes / 1000 SCF = $ 0.21)

If you were able to use the same Model # 1101 Super Air Nozzle operating at only 40 PSIG, while still achieving the desired end result, the air demand would decrease to only 8.1 SCFM, reducing the hourly cost to $ 0.12.  (8.1 SCFM x $ 0.25 x 60 minute / 1000 SCF = $ 0.12)

Don’t waste your money

Leaks in a compressed air system can account for up to 30% of the total operational cost of the compressor, wasting thousands of dollars of electricity per year. Some of the more common places for a leak to occur would be at connection points such as valves, unions, couplings, fittings, etc.

In this table, you will see that a certain amount of air volume is lost through an orifice or opening. If you have several leaks throughout your facility, it isn’t gong to take long for the waste and high operating costs to quickly add up as well as potential increases in repair or maintenance costs for the existing compressor. The industry average shows that any leakage more than 10%, shows there are areas where operational improvements could be made in a compressed air system.

Stay tuned to our blog over the next few weeks as we will discuss how following a few simple steps can help optimize your current compressed air system, in many cases, reducing energy costs related to compressed air waste, leading to a more economical operation.

In the meantime, if you have any questions or would like to discuss a particular application or EXAIR product, give me a call at 800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

 

 

 

Fluidics, Boundary Layers, And Engineered Compressed Air Products

Fluidics is an interesting discipline of physics.  Air, in particular, can be made to behave quite peculiarly by flowing it across a solid surface.  Consider the EXAIR Standard and Full Flow Air Knives:

Compressed air flows through the inlet (1) to the Full Flow (left) or Standard (right) Air Knife, into the internal plenum. It then discharges through a thin gap (2), adhering to the Coanda profile (3) which directs it down the face of the Air Knife. The precision engineered & finished surfaces serve to optimize the entrainment of air (4) from the surrounding environment.

If you’ve ever used a leaf blower, or rolled down the car window while traveling at highway speed, you’re familiar with the power of a high velocity air flow.  Now consider that the Coanda effect can cause such a drastic redirection of this kind of air flow, and that’s a prime example of just how interesting the science of fluidics can be.

EXAIR Air Amplifiers, Air Wipes, and Super Air Nozzles also employ the Coanda effect to entrain air, and the Super Air Knife employs similar precision engineered surfaces to optimize entrainment, resulting in a 40:1 amplification ratio:

EXAIR Intelligent Compressed Air Products such as (left to right) the Air Wipe, Super Air Knife, Super Air Nozzle, and Air Amplifier are engineered to entrain enormous amounts of air from the surrounding environment.

As fascinating as all that is, the entrainment of air that these products employ contributes to another principle of fluidics: the creation of a boundary layer.  In addition to the Coanda effect causing the fluid to follow the path of the surface it’s flowing past, the flow is also affected in direct proportion to its velocity, and inversely by its viscosity, in the formation of a boundary layer.

High velocity, low viscosity fluids (like air) are prone to develop a more laminar boundary layer, as depicted on the left.

This laminar, lower velocity boundary layer travels with the primary air stream as it discharges from the EXAIR products shown above.  In addition to amplifying the total developed flow, it also serves to attenuate the sound level of the higher velocity primary air stream.  This makes EXAIR Intelligent Compressed Air Products not only as efficient as possible in regard to their use of compressed air, but as quiet as possible as well.

If you’d like to find out more about how the science behind our products can improve your air consumption, give me a call.

The Case Is Mounting For Stay Set Hoses

So, you’ve selected a quiet, efficient, and safe EXAIR Super Air Nozzle for your blow off application – good call! – and now you’re thinking about how to install it.  Sometimes, it’s as simple as replacing whatever you’re using right now:

EXAIR Intelligent Compressed Air Products have common NPT (or BSP) connections, making for easy replacement of most any existing threaded device.

Or maybe you’re using an open end blow off…in which case, you’re just an adapter away:

EXAIR Super Air Nozzles are quick and easy to install on existing copper tube, via a simple compression fitting.

Perhaps, though, it’s a new installation, or the existing supply lines aren’t suitable for one reason or another.  In those cases, we’ve still got you covered…consider the EXAIR Stay Set Hose:

Precise aiming and location is a breeze with EXAIR Stay Set Hoses.

Available in a variety of lengths from 6″ to 36″, they’re positionable, and re-positionable with a simple bending action.  They won’t kink or easily fatigue like copper tubing.  The supply end is 1/4  MNPT, and you have your choice of 1/4 MNPT or 1/8 FNPT on the other end, depending on which Super Air Nozzle, Air Jet you need to use it with.

We also offer Blow Off Systems, which are a combination of a specific Air Nozzle (or Air Jet,) fitted to a Stay Set Hose:

Model 1126-9262, for example, is a Model 1126 1″ Flat Super Air Nozzle with a 9262 Stay Set Hose.

For added convenience and ease of installation, these products can also come with a Magnetic Base:

Mag Bases come with one or two outlets. Stay Set Hoses come in lengths from 6″ to 36″.

Stay Set Hoses are also available with a variety of our Soft Grip Safety Air Guns, and they make the GEN4 Stay Set Ion Air Jet one of our most popular Static Eliminator products.  They’ve even been successfully applied with small Air Amplifiers and Air Knives…with certain limitations (spoiler alert: trying this with a 108″ Super Air Knife is going to be a definite “no.”)

Model 110003 3″ Aluminum Super Air Knife with 6″ Stay Set Hose & Magnetic Base.

From the beginning in 1983, EXAIR’s focus has been on being easy to do business with, and that goes from our friendly customer service to our expert technical support to our 99.9% on-time shipments (22 years and running) to designing our engineered products and value-added accessories with efficiency, safety, and ease of installation in mind.  If you want to find out more, give me a call.

EXAIR’s EFC is THE Way to Save Compressed Air

waste

Compressed air is the most expensive utility for most industrial facilities. The energy costs associated with the generation of compressed air can be very high. Because of this, EXAIR manufactures a wide range of products geared towards reducing your overall compressed air consumption.

The best way to save compressed air is to simply turn it off when it’s not being used. This might seem pretty simple, but there may be processes in your facility where this couldn’t be achieved by just turning a valve. In applications where product is traveling along a conveyor, and must be dried, cooled, or blown off, there is likely some spacing in between the parts. It isn’t necessary to keep the blowoff running constantly if there’s periods of intermittent spacing. To help reduce the overall load on the air compressor, implementing a solution to shut the air off in between each part can have a dramatic impact. EXAIR’s Electronic Flow Control, or EFC, is designed to improve efficiency by reducing overall compressed air usage. It utilizes a photoelectric sensor that detects when the part is present. When it’s not, it triggers a solenoid valve to close and shut off the compressed air supply.

efcapp

 

Let’s take a look at an example that shows just how much air (and $$) an EFC can save. We had a manufacturer of car bumpers that was using a Model 112060 60” Super Ion Air Knife supplied at 40 PSIG to remove dust prior to a painting operation. The bumpers were moving at about 10’/minute and had 1’ of spacing in between each part. The bumpers are only under the blowoff for 10 seconds, while 6 seconds passed with no part present. With a (3) shift operation, this translates to 1,440 minutes of nonstop compressed air usage per day.

A 60” Super Ion Air Knife will consume 102 scfm at 40 PSIG. Their current method was using a total of 146,880 SCFM.

102 SCFM x 1,440 minutes = 146,880 SCF

With the EFC installed, the air was shut off for 6 seconds reducing the airflow by 37.5%. With the EFC installed, the compressed air consumption per day was reduced to 91,800 SCF.

146,880 SCF x .625 = 91,800 SCF

As a general rule of thumb, compressed air costs $0.25/1,000 SCF. By saving 55,080 SCF per day, this manufacturer was able to save $13.77 per day. Since this was a 24 hour/day shift running 7 day/week, total savings for the year came in at $5,012.28. This easily recoups the costs of the EFC and then begins to pay you in less than 6 months.

55,080 SCF x ($0.25/1,000 SCF) = $13.77

$13.77 x 7 days/week x 52 weeks/year = $5,012.28

The EFC models available from stock can accommodate flows up to 350 SCFM. For applications requiring more compressed air, EFCs with dual solenoids are also available. If you have an application in one or more of your processes where intermittent compressed air use could help save you money, give us a call. We’d be happy to take a look at the application and help determine just how quickly the EFC could start paying YOU!

Tyler Daniel
Application Engineer
E-mal : TylerDaniel@Exair.com
Twitter: @EXAIR_TD