The Basics of Calculating Heat Load for Cooling Electrical Cabinets

Is your electrical cabinet overheating and causing expensive shut downs? As spring and summer approach, did your enclosures have seasonal overheating problems last year? Is your electrical cabinets AC Unit failing and breaking down? Then it may be time to consider EXAIR Cabinet Coolers Systems. These systems are compressed air powered cooling units designed to keep your cabinet cool in hot environments. Major benefits include no moving parts to wear out, UL listed to maintain the NEMA integrity of your enclosure (also CE compliant), they are simple and quick to install and they reliably turn on and off as needed (perfect for solving seasonal overheating).

Just one question then; how do you pick which Cabinet Cooler is best for your application? It’s time to bust out ye ole trusty calculator and crunch some numbers. Keep in mind that the following calculations use baselines of an Inlet air pressure of 100 psig (6.9 bar), compressed air temperature of 70F (22C), and a desired internal temp of 95F (35C). Changes in these values will change the outcome, but rest assured a Cabinet Cooler system will generally operate just fine with changes to these baselines.

How the EXAIR Cabinet Cooler System Works


Before we dig right into the math, keep in mind you can submit the following parameters to EXAIR and we will do the math for you. You can use our online Cabinet Cooler Sizing Guide and receive a recommendation within 24 hours.

There are two areas where we want to find the amount of heat that is being generated in the environment; this would be the internal heat and the external heat. First, calculate the square feet exposed to the air while ignoring the top. This is just a simple surface are calculation that ignores one side.

(Height x Width x 2) + (Height x Depth x 2) + (Depth x Width) = Surface Area Exposed

Next, determine the maximum temperature differential between the maximum surrounding temperature (max external temp) and the desired Internal temperature. Majority of cases the industrial standard for optimal operation of electronics will work, this value is 95F (35C).


Max External Temp – Max Internal Temp Desired = Delta T of External Temp

Now that we have the difference between how hot the outside can get and the max, we want the inside to be, we can look at the Temperature Conversion Table which is below and also provided in EXAIR’s Cabinet Cooler System catalog section for you. If your Temperature Differential falls between two values on the table simply plug the values into the interpolation formula.

Once you have the conversion factor for either Btu/hr/ft2, multiply the Surface Area Exposed by the conversion factor to get the amount of heat being generated for the max external temperature. Keep this value as it will be used later.

Surface Area Exposed x Conversion Factor = External Heat Load

Now we will be looking at the heat generated by the internal components. If you already know the entire Watts lost for the internal components simply take the total sum and multiply by the conversion factor to get the heat generated. This conversion factor will be 3.41 which converts Watts to Btu/hr. If you do not know your watts lost simply use the current external temperature and the current internal temperature to find out. Calculating the Internal Heat Load is the same process as calculating your External Heat Load just using different numbers. Don’t forget if the value for your Delta T does not fall on the Temperature conversion chart use simple Interpolation.

Current Internal Temp – Current External Temp = Delta T of Internal Temperature
Surface Area Exposed x Conversion Factor = Internal Heat Load

Having determined both the Internal Heat Load and the External Heat Load simply add them together to get your Total Heat Load. At This point if fans are present or solar loading is present add in those cooling and heating values as well. Now, with the Total Heat Load match the value to the closet cooling capacity in the NEMA rating and kit that you want. If the external temperature is between 125F to 200F you will be looking at our High Temperature models denoted by an “HT” at the start of the part number.

From right to left: Small NEMA 12, Large NEMA 12, Large NEMA 4X

If you have any questions about compressed air systems or want more information on any of EXAIR’s products, give us a call, we have a team of Application Engineers ready to answer your questions and recommend a solution for your applications.

Cody Biehle
Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Battling Heat Transfer

If you haven’t read many of my blogs then this may be a surprise. I like to use videos to embellish the typed word. I find this is an effective way and often gives better understanding when available.  Today’s discussion is nothing short of benefiting from a video.

We’ve shared before that there are three types of heat transfer, more if you go into sub-categories of each. These types are Convection,  Conduction, and Radiation. If you want a better understanding of those, feel free to check out Russ Bowman’s blog here.  Thanks to the US Navy’s nuclear power school, he is definitely one of the heat transfer experts at EXAIR.  If you are a visual learner like myself, check out the video below.

The Application Engineering team at EXAIR handles any call where customers may not understand what EXAIR product is best suited for their application. A good number of these applications revolve around cooling down a part, area, electrical cabinet, or preventing heat from entering those areas.  Understanding what type of heat transfer we are going to be combating is often helpful for us to best select an engineered solution for your needs.

Other variables that are helpful to know are:

Part / cabinet dimensions
Material of construction
External ambient temperature
If a cabinet, the internal air temperature
Maximum ambient temperature
Desired temperature
Amount of time available
Area to work with / installation area

Understanding several of these variables will often help us determine if we need to look more towards a spot cooler that is based on the vortex tube or if we can use the entrained ambient air to help mitigate the heat transfer you are seeing.

If you would like to discuss cooling your part, electrical cabinet, or processes, EXAIR is available. Or if you want help trying to determine the best product for your process contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Video Source: Heat Transfer: Crash Course Engineering #14, Aug 23, 2018 – via CrashCourse – Youtube – https://www.youtube.com/watch?v=YK7G6l_K6sA

Undersized Regulators Create Performance Problems with Compressed Air

“I have a Cabinet Cooler installed on my panel but it isn’t getting the temperature down cold enough. Can you quote me for a duplicate system to install on this panel?” This was a recent inquiry from a customer regarding an electrical enclosure that they had installed in their plant. The Cabinet Cooler was producing cold air, but not enough to keep the cabinet at their desired temperature. It would seem logical that they need additional capacity, right? While that could be the case, in this instance it most definitely was not.

When we get questions like this, we first want to take a closer look at the current installation. The cooling capacity for each system is published in our catalog. BUT, in order to rate a cooling capacity for any type of cooling system, some assumptions must be made. All Cabinet Coolers are specified with 70°F compressed air fed to the Cabinet Cooler at a pressure of 100 PSIG. In addition, each cooler has a specified volume of air that it must utilize in order to produce that rated cooling capacity. If any one of those parameters change, so does the overall cooling power.

In this particular case, the customer had installed a non-EXAIR pressure regulator just upstream of the cooler. Upon looking at the specifications for this regulator, it was found that the overall volume of air it can deliver was just 10% of the overall volume needed to produce the rated 1700 Btu/hr. They didn’t need another Cabinet Cooler System, they just needed to remove that restriction! Upon learning that it needed 100 PSIG, they removed the regulator and supplied full line pressure. No more heat alarms for that shift!

CC undersized valve

Rather than purchasing and installing an unnecessary system, they were able to get back up and running just by removing the problem upstream. At EXAIR, we want to make sure that you’re getting the most out of our products. Just because you call and inquire about a new purchase doesn’t necessarily mean that you need it. We’re here to help you determine if something is afoul with the current setup and make sure you have all of the knowledge necessary to rectify it.

We’re right in the middle of summer, and boy is it hot out there. If you have panels that are overheating and creating problems for you in your processes, give us a call. With Cabinet Cooler Systems ready to ship same day from stock (with properly sized regulators) you can have it fixed by tomorrow.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Calculating Heat Loads to Cool Electronic Cabinets

With the hot summer months upon us, elevated temperatures can cause shutdowns and interference with electrical systems.  For every 10 deg. C rise above the operational temperature, the life of an electrical component is cut in half.  With Freon-based coolers, higher ambient conditions make them less effective; and opening the electrical panel to have a fan blow inside creates a dangerous hazard as well as blowing hot, humid, dirty air inside the panel.  To reduce loss in production and premature equipment failures, it is important to keep the electrical mechanisms cool.  The EXAIR Cabinet Cooler Systems are designed to do just that.

To find the correct type and size, we need some information about your electrical panel.  EXAIR makes it easy with the Cabinet Cooler Sizing Guide.  This sheet goes over the important details to find heat loads, proper NEMA type, and options for easy installation. The EXAIR Cabinet Coolers range from 275 BTU/hr (69 Kcal/hr) to 5,600 BTU/hr (1,411 Kcal/hr) in cooling capacities.  And with the filled-out form, we can make sure that the correct model is recommended.  In this blog, I will cover a section of the sizing guide, the heat loads.

To properly cool, we need to calculate how much heat is being generated.  Heat loads come from three main areas; internal, external and solar.  Here are some methods to find the information needed for heat load calculations.

Internal Heat Load:  The internal load is the heat generated from inside the electrical panel.  This heat is produced from the inefficiencies of the electrical devices.  There are three ways that we can figure the internal heat load.

Step A: The simplest way is by hanging a piece of metal like a washer inside the panel for about 15 minutes.  We can get an average temperature inside.  The best place for the washer will be toward the top half of the panel, as heat rises.  In the sizing guide, you can mark the temperature next to “Internal temperature now”.

Step B:  if you know the electrical components inside that generate heat, a list can be made with volt/amp ratings, or watts.  This is very useful for new panels.  The major devices would be VFD (Variable Frequency Drives), power supplies, UPS, transformers, thyristors, etc.  We can calculate the inefficiency of the electrical components which will give us the internal heat load.

Step C:  If you know the amount of power going into the panel, and the amount of power leaving the panel, the difference will tell us the amount of power that remains for the electrical components.  We can take a 5% average as the heat loss.

External Heat Load:  The external heat load is attributed to the environment surrounding the electrical panels.  This is a standard temperature reading in oF or oC.  Only with Step A above, we will need to know the external temperature at the time that you measured the internal heat measurement.  This needs to be placed in “External Temperature Now”.  The difference to the internal temperature will give us the heat load per square feet (square meter).  Reference chart below.  We will also need to know the highest external temperature that the panel will see.  So, during the hottest day of the hottest month, the EXAIR Cabinet Cooler will still be able to keep your electronics cool and operational.

Solar Heat Load:  The solar heat is only needed if the panel is located outside without cover and exposed to sunlight.  For this type of heat load, we will need to know the color of the electrical panel.  Lighter colors will not absorb as much heat as darker colors.

Because there is so much information that is critical for proper sizing, the Cabinet Cooler Sizing Guide is the best tool to use to facilitate the calculations.  I gave examples above to find different ways to get the proper information.  Electrical shutdowns are expensive and annoying.  If you have interruptions from high internal temperatures, EXAIR Cabinet Coolers are a great solution.  They can be installed quickly and easily.  With no moving parts or costly preventative maintenance needed, they can run for decades in keeping your electronics cool.  For our U.S. and Canadian customers, you will receive an AC Sensor for free, a $58.00 value, as a promotional item from now until the end of August 2020 with qualified purchases.  How can you not give them a try?  If you have any questions about Cabinet Coolers or the Sizing Guide, you can contact an Application Engineer at EXAIR.  We will be happy to help.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb