Engineered Air Nozzles Reduce Noise Levels and Outlet Pressure, Meeting OSHA Requirements

“My operators are complaining that our air guns are too loud, how can you help me?” – is a very common inquiry we receive here at EXAIR on almost a daily basis. Many open end blowoffs or air guns fitted with nozzles that have cross drilled relief holes create high pitch wind shear, resulting in excessive noise levels, sometimes exceeding 100+ dBA. This not only is a safety concern but also an OSHA violation.

Variety of Air Nozzles that produce dangerously loud noise levels

Loud noises and the length of exposure time can lead to significant health concerns such as long term hearing loss, increased stress levels and potential injury due to lack of concentration. The Occupation Safety and Health Administration (OSHA) introduced Standard 29 CFR 1910.95(a) as a way to protect workers from job related injuries associated to potentially dangerous sound levels. Per the Standard, at 90 dBA an operator is limited to a maximum of 8 hours of constant exposure. As noise levels increase, the allowable exposure time decreases, in some cases slowing production, costing a company on their bottom line.

 

EXAIR’s Air Nozzles are engineered so they entrain surrounding air across the profile of the nozzle, which produces a smoother airflow, ultimately reducing wind shear, resulting in much lower sound levels, meeting the OSHA Standard.

Illustration showing the air travel of our Super Air Nozzles

 

In addition, our Air Nozzles also meet the OSHA Standard 1910.242(b) for 30 PSI dead end pressure. All of our engineered Air Nozzles provide a relief or a safe path for the air to exit if the nozzle were to be blocked or pressed against an operator’s body so the exiting air pressure will never reach 30 PSIG.

All of EXAIR’s Air Nozzles are available with standard NPT threads to easily adapt to existing air guns. We also off our full line of Safety Air Guns which are fitted with our engineered nozzles, providing an “off-the-shelf” OSHA compliant solution. For help selecting the best product to replace your existing device or if you have a new application you would like to discuss, give us a call at 800-903-9247.

Justin Nicholl
Application Engineer
justinicholl@exair.com
@EXAIR_JN

 

Video Blog: Medium Vortex Tube Cooling Kit

EXAIR offers (3) Vortex Tube Cooling Kits, and the video below will provide an overview of the medium size offering, for refrigeration up to 2800 BTU/hr (706 Kcal/hr.)

If you have questions regarding Vortex Tube Cooling Kits or any EXAIR Intelligent Compressed Air® Product, feel free to contact EXAIR and myself or one of our Application Engineers can help you determine the best solution.

Brian Bergmann
Application Engineer

Send me an email
Find us on the Web
Like us on Facebook
Twitter: @EXAIR_BB

Adding Atomized Water To A Starch Blending Application

Starch blending takes place at the top of this tower

The image above shows a material transfer process for starch.  At the top of the tower the starch rests inside of tumbling tanks (shown below) which blend larger pieces into small, finely blended particles.  In order to achieve the proper blend, an hydration level of 5% water must be maintained within the tank.  For the water introduced to the tank, the smaller the droplet size of the water particles, the better the blend.  The current setup in this application is to spray water directly into the tanks, by hand, using a pump sprayer.

These are the tanks at the top of the tower shown in the photo above

The investigation into droplet sizes led this customer to EXAIR Atomizing Nozzles, searching for a method to introduce small droplet water particles into the blending tanks.  The ultimate question was “How small of a particle size can we achieve with an EXAIR Atomizing Nozzle?”

The answer to that question can be found here on our website and in our catalog as well.  Our smallest confirmed droplet size is currently 22µm when using our 1/4″ NPT Siphon Fed Atomizing Nozzles, which was more than enough for this application.

Model SR1010SS EXAIR Atomizing Nozzle

By installing SR1010SS atomizing nozzles into this application this customer is able to achieve the required hydration level with small droplet size water particles.  These particles ensure proper blending of the starch and proper quality for the final product.  And, the atomizing nozzles prevent an operator from having to manually add the necessary water to achieve the required hydration in the blending tanks.

If you have a solution in need of an atomized liquid solution, contact an EXAIR Application Engineer.  We’re here to help.

 

Lee Evans
Application Engineer

LeeEvans@EXAIR.com
@EXAIR_LE

Cabinet Cooler Systems Save The Day, Every Day

Summertime temperatures get hot. Protect your electronics with an EXAIR Cabinet Cooler System.

As you may have seen in our most recent E-NEWS Special Bulletin, or experienced in real life (depending on where you’re located,) most of the eastern United States is seeing a pretty significant heat wave for early summer…or, as we call it at EXAIR, “Cabinet Cooler Season.”  And this year is kicking it off with a bang, for sure.

On Tuesday, when the E-NEWS email went out, I was on the phone, processing an order for a Model 4340 NEMA 12, 2,800 Btu/hr, Thermostat Controlled Cabinet Cooler System, to ship overnight to a user who wanted to protect the new drive they were replacing because theirs overheated.  They were up and running before noon on Wednesday.

On Wednesday, four local customers placed “will call” orders for Cabinet Cooler Systems.  I had the pleasure of talking with one of them, who was installing one for the very first time.  As he was looking over the Installation & Operation Guide before he left our building, he just wanted to make sure that hooking it up was as simple as it sounded…and it is.  We pulled the parts from the box and went over exactly how each step is performed, and he left feeling confident that he’d have it installed pretty quickly.  Just in case, I also got his email address and sent him a link to our NEMA 4 Cabinet Cooler System Installation Video Blog:

I don’t know what the rest of the summer holds in store, but I know this: if you have concerns about protecting sensitive, critical, and/or expensive electrical & electronic enclosures, EXAIR Cabinet Cooler Systems are the solution you’re looking for.  Easy to install.  Maintenance free operation.  Durable, UL Listed, and CE Compliant.  If you’d like to discuss your application and get one for yourself, call me; let’s talk.

***Order an EXAIR Cabinet Cooler System before July 31, 2017, and get a FREE AC Sensor!***

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Identifying Which EXAIR Line Vac You Have

I’ve written in the past about how to identify an EXAIR part, specifically how to identify a Vortex Tube. I recently ran into a very similar situation, only this customer was having difficulty identifying a Line Vac that was installed on one of his machines. The Line Vac was installed to remove a small pin from their part and convey it out to a separate bin for disposal. Rather than purchasing an additional machine, they were trying to expand the line and build one themselves. They reached some difficulty when trying to identify the EXAIR part that was installed and reached out to us for help.

line vac

EXAIR Model 6079 Line Vac

Our Line Vacs come stock in (4) different materials of construction: aluminum, 303 stainless steel, 316 stainless steel, and for our Heavy Duty models a hardened alloy steel for abrasion resistance. The hardware used on the aluminum models is a black oxide screw whereas the others all have stainless steel hardware. Since his had black oxide hardware, it was easy to discern that this was in fact an aluminum Line Vac. To differentiate between the 303 and 316 models, we make a small cut around the circumference of the part. The outer appearance of the Heavy Duty is easily distinguishable.

Once we’ve identified the material of construction we must measure the O.D. of the inlet and outlet. By cross-referencing this measurement with the dimensions in our catalog you can then identify exactly which model number Line Vac that you have. In this scenario, the customer had to remove the Line Vac from the machine to measure the O.D. of the cap. The manufacturer of the machine had turned down the outside of the outlet on the body. Fortunately, he sent us a photo which clearly showed that this was the case. Based on his measurement, I determined that he had an EXAIR Model 6079 that had been modified. He was able to immediately place an order for the replacement and it shipped that day!

LV dimensions

Chart from the catalog displaying Line Vac dimensions

If you have an EXAIR part somewhere in your facility that you’re struggling to identify, give an Application Engineer a call. Through a series of investigative questions (and hopefully the help of photos!) we’ll be able to determine the model number that you have and clear up any uncertainty.

Tyler Daniel
Application Engineer

E-mail: TylerDaniel@exair.com
Twitter: @EXAIR_TD

Cleaning A Cookie Cutter Die Using A 24″ 316SS Super Air Knife

I recently worked with a food manufacturer who was looking for a way to clean the die roller in their cookie cutting process.The cutting machine is fed by a ribbon of extruded dough that is cut into various shapes as it passes by a 24″ wide roller. After the cookies are cut, the finished product then travels down a chute to a feed tray where it is conveyed to a packaging area. They were starting to see an increase in rejects as some cookies were being “double stamped” as a result of residual dough sticking to the die. They tried to install a brush traveling the span of the roller in an effort to wipe it clean but this wasn’t very effective and also caused some contamination as some of the bristles would break loose. They then tried having an operator use an air gun to manually clean the roller and while this did work, it severely slowed the process down, reducing production and negatively affecting their bottom line.

That’s a lot of cookie cutters!

After discussing the details of the application, I recommended the customer use our 24″ 316ss Super Air Knife in the application. The Super Air Knife produces a laminar sheet of air across the length of the knife and consumes only 2.9 SCFM per inch of knife length when operated at 80 PSIG. The 316ss construction resists pitting and is the preferred choice when being applied to a food process as it minimizes the potential for metal contamination.

SS Super Air Knife available in lengths from 3″ up to 108″

When it comes to wide area treatment, an Air Knife is the optimal choice. If you have a similar application that requires assistance, please contact an Application Engineer at 1-800-903-9247.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

Largest collection of cookie cutters I’ve ever seen image courtesy of Steven-L-Johnson via Creative Commons license.

 

Line Vac Brings Additional Solution To Alumina Spill Recovery

Mobile spill recovery unit

In my last blog post I wrote about vacuuming alumina dust in an aluminum manufacturing plant in South America.  In that application we were returning spilled alumina to the original hopper so that processing could continue.

This same customer has an additional application to vacuum spilled material, but the new need is to assist mobile spill recovery vehicles (shown above) in vacuuming spills of varying volume. These mobile vehicles are effective for most of the spillage demands they can access, but there are times where additional vacuum is needed, such as when the spill location is beyond the hose length of the system.  In those scenarios additional vacuum hose can be added, but line losses render the performance too low to produce real results.  With this in mind, the end user looked for a point-of-use vacuum boosting solution, and thought about again using an EXAIR Line Vac.

Considering the potential use of a Line Vac, we approached this in the same way as any other pneumatic conveying application, gathering the required information to allow a proper model number selection.  As with the previous application we confirmed the following:

  •      Bulk density of the material
  •      Size of the material
  •      Conveyance height
  •      Conveyance distance
  •      Required conveyance rate
  •      Available compressed air supply

The spills in this facility are comprised of alumina dust with a bulk density of 1.1g/cm³ (68.7 pounds/ft³).  From the floor to the maximum height of the vehicle is a distance of 3.25m (~11ft), and conveying distances were in a range of 3-10 meters (10-30 feet).  The customer had no required conveyance rate, only a requirement to boost vacuuming capacity when needed.

With this information confirmed we were able to make a model number recommendation, the 2″ Heavy Duty Line Vac model 150200.  Adding the 150200 Heavy Duty Line Vac to this mobile spill recovery unit brings additional vacuum flow and conveyance of the alumina through a high velocity airstream, making mobile spill recovery efforts more effective.

If you’re in need of a pneumatic conveying solution, contact an EXAIR Application Engineer (1-800-903-9247).  We’ll be happy to help.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

%d bloggers like this: