It’s Earth Day! Do Your Part Tomorrow and Throughout the Year.

Saturday, April 22nd marks the 47th annual Earth Day and it will be observed in over 193 countries.  For EXAIR, this year marks our 34th year helping compressed air users save compressed air energy and electrical resources. It is also another year that we continue to focus on manufacturing our products with minimal impact and doing our part to help protect our planet. We are proud to manufacture efficient products, implement processes and programs throughout our facility to help use our resources wisely and recycle everything we possibly can. 

First and foremost, we manufacture and sell Intelligent Compressed Air Products that are specifically designed to reduce the use of compressed air throughout facilities.  On top of that, when you purchase an EXAIR product it will arrive in fully recyclable packaging and, in most cases, is made from a material that will be recyclable should it reach a point it is no longer useful.

EXAIR recycles 100% of the metal scrap from our machining processes, which equates to 6.5 tons. Our cardboard and mixed paper products are also recycled 100%. Of the waste we place into our trash dumpsters – 80% is recycled and 20% is sent to the landfill.  The paper products even get down to all of paper towels that are used and all the scratch paper that the office utilizes.   In total, EXAIR recycled tons 36.6 tons of paper and cardboard in 2016 which equates to 80% of the solid waste we produce is recycled.  We focus on more ways to improve this percentage every year (I am still trying to convince everyone to reuse the coffee and filters in the coffee maker).  Something about it got so thick you needed a spoon to “drink” your coffee.

Another waste reducing factor that has proven to work out well for EXAIR is asking every customer if they accept digital invoices rather than requiring them to be printed and mailed.   Thanks to our wonderful customers we have been able to eliminate 91% of all printed and mailed invoices which helps to reduce our resources used as well as the amount of materials that are possibly turned into solid wastes at their facilities. This also prevents the gas and vehicles necessary to deliver all of these invoices by mail. 

We also generate and recycle our wastewater for reclamation – in 2016 we recycled 1008 gallons. 

To get back to what EXAIR products have done to help reduce waste, we were also able to optimize our own compressed air system by eliminating air leaks and have saved 1 million cubic feet of compressed air.  We have also utilized our very own Chip Trapper Systems in our manufacturing areas and extended the water soluble coolant life from 6 weeks per changeover to 6 months per changeover. Keeping our coolant clean allows us to minimize the total amount of wastewater we recycle each year. 

On top of all the efforts above, we also continue to maintain RoHS compliance on all electronic products, as well as actively track our supply chains to ensure no Conflict Minerals are being sourced from the Democratic Republic of Congo.

If you have any questions on how we can help your facility reduce their use of compressed air or why we continue to reduce our wastes and increase our recycling efforts, contact us.

To see our full Sustainability Plan follow this link.

Enjoy Your Weekend,
EXAIR Corporation

Thank you to Kate Ter Haar for the Happy Earth Day image. Creative Commons License. 

If at First You Don’t Succeed Try, Try Again!

Over the past few weeks I’ve been going back and forth with my phone provider over some technical issues I’ve been having with the device. After some troubleshooting, we were able to conclude that the antenna has likely become loose, leading to the phone periodically not receiving service. Naturally, we’re outside of the 1-Year “Warranty” period that covers a defective device. I paid my insurance deductible and received a “refurbished” phone the following day. Unfortunately, this refurbished phone was unable to take pictures with the front-facing camera. I know what you’re thinking, how on Earth can I take selfies without a front-facing camera? So it was back to the phone provider to get another replacement, fortunately this time they sent a brand new device.

There’s nothing more frustrating than trying to get something to work right out of the box, only to experience issues. Whenever a customer is having an issue with a particular product, there’s a certain progression that we go through in order to assess the problem and determine the root cause. In some cases it is something simple, others it can be a few individual problems that are compounding each other. I recently assisted a customer that was having problems with his 110 Gallon Reversible Drum Vac System. He was having difficulty pumping water out of a container and into the 110 gallon drum. He stated that he just received the unit and was unable to get it to work.

RDV pic

EXAIR’s Reversible Drum Vac installed on a 110 Gallon Drum

This is a call that we get from time to time, and is generally remedied pretty quickly. Our first step is to check the air pressure at the inlet of the Reversible Drum Vac while it is operating. We recommend an inlet pressure of at least 80 PSIG for proper operation. By installing a pipe tee with a pressure gauge directly at the unit, we can not only verify the inlet pressure but also that the Reversible Drum Vac is being supplied with an adequate volume of compressed air. If the pressure on the gauge begins to decrease once the unit is in operation, we can conclude that the volume of compressed air to the Reversible Drum Vac is insufficient. This can be due to the use of restrictive quick disconnect fittings, improper line size, or a compressor that is undersized.

If the air supply is sufficient, we then inspect the system for vacuum leaks. If the drum does not have a complete seal, the system will not function. If there’s no vacuum leak and there is an adequate supply of compressed air, the Reversible Drum Vac likely needs to be cleaned. It took us a few tries to get there but through a little bit of trial and error, we were able to determine that this was exactly the case in this scenario. Even though the system was new, it had been supplied with compressed air that was not properly filtered. Some scale, rust and debris from the customer’s supply lines made its way into the body of the Reversible Drum Vac, impeding the flow of air. Here is a video that shows the cleaning procedure for the Reversible Drum Vac. Over time the Reversible Drum Vac can accumulate debris inside of the plenum chamber. Regular maintenance of the unit will ensure that it stays within specifications for when it’s needed most!

If you have an EXAIR product that’s not performing as well as it used to, give us a call. One of the Application Engineers will be able to walk you through the steps to ensure that you’re getting the most out of our products!

Tyler Daniel
Application Engineer
E-mail: tylerdaniel@exair.com
LinkedIn: @EXAIR_TD

Mini Cooler Improves Custom Cutlery Production

Vortex Tubes use compressed air to create a stream of cold air and a stream of hot air. As the compressed air enters the unit, it travels through a spin chamber which spins the air at speeds up to 1,000,000 RPM producing temperatures ranging from -50°F to +260°F and providing cooling up to 10,200 Btu/hr. With no maintenance requited and no moving parts, they have become quite popular in large and small scale cooling applications in place of more conventional methods of cooling.

How an EXAIR Vortex Tube Works

EXAIR has incorporated this technology into several different products like our Cabinet Cooler Systems used to cool electrical panels and our Cold Guns commonly used to replace messy mist systems in tool cooling, milling and machining operations. For smaller scale processes we offer our Mini Cooler System which provides a 50°F temperature drop from the compressed air supply temperature and 550 Btu/hr. of cooling capacity.

I recently worked with a small, custom knife manufacturer who was looking for a way to keep his tooling cool during production. As the blades are made, he uses a small rotary die tool to shape and sharpen the blade. He also makes his own handles out of materials like wood, ceramics or other metals, which get etched with a custom design into the surface. The heat generated during theses processes, causes the tooling to either bend or break completely, resulting in damage to the knife blade and burns or breaks in the wood and ceramic handles. After looking at our spot cooling products online, he familiarized himself with the Vortex Tube technology but with only 12.9 SCFM of air available, he was unsure what product would best fit his application.

With the limited amount of air available, the Model # 3808 Mini Cooler System was the perfect solution. The Mini Cooler uses only 8 SCFM @ 100 PSIG, falling well within the capacity of his current compressor. The integral magnetic base would ensure an easy installation and with the included flexible hose, he could direct the cold air to the needed area.

The Mini Cooler is ideal for small tool and part cooling applications.

For help with your spot cooling needs or to discuss how the Vortex Tube technology could help in your process, contact an application engineer for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

 

 

Video Blog: The EXAIR Ultrasonic Leak Detector Works for Vacuum Leaks?

 

A brief video showcasing the EXAIR model 9061, Ultrasonic Leak Detector’s, performance on vacuum leaks.  For more information or questions on what else the ULD can be used for, contact an Application Engineer!

 

Brian Farno
Application Engineer Manager
BrianFarno@EXAIR.com
@EXAIR_BF

Camera Lens Cooling with EXAIR Vortex Tubes in a High Temperature Environment

Connection side of camera lens housing. Dimensions shown are in cm.

A customer in Russia contacted our distributor in Moscow about an application to monitor the flow of melted glass.  In their application, the end user had installed (4) camera “eyes” with thermal insulation to instantaneously measure the melted glass flow.  But, the high ambient temperatures would cause the temperature of the camera lens to slowly increase during operation, eventually resulting in an overheating condition.  This overheating condition rendered the cameras inoperable until they were cooled below a temperature of approximately 40°C (104°F).

What this end user (and application) needed was a suitable solution to cool the lens of the camera to a temperature below 40°C (104°F).  A typical refrigerant based air conditioner wouldn’t work for this application due to space and temperature constraints, as the cameras are located close to the furnace with ambient temperatures of 50°C (122°F) or higher.

What did provide a viable solution, however, were High Temperature EXAIR Vortex Tubes.  Suitable for temperatures up to 93°C (200°F), and capable of providing cooling capacities as high as 10,200 BTU/hr., these units fit the bill for this application.

Full view of the camera lens housing. The camera lens is the portion protruding from the far left of the housing.

After determining the volume of compressed air available for each camera, and after discussing the solution options and preferences with the customer, they chose (4) model BPHT3298 Vortex Tubes, using (1) Vortex Tube for each camera.  The cold air from the Vortex Tube will feed directly onto the camera lens, keeping it cool even in the hot ambient conditions.  This removes lost productivity due to machine downtime, which in turn increases output and reliability from the application process.

High Temperature Vortex Tubes provided a solution for this customer when other options were unable to deliver.  If you have a similar application or would like to discuss how an EXAIR Vortex Tube could solve an overheating problem in your application, contact an EXAIR Application Engineer.  We’ll be happy to help.

 

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE

Another Label Problem, Another Super Air Knife Solution

Last week, I used this space to brag on our Super Air Knives, and how they solve a common problem in bottling applications: label adhesion. This week, I have another opportunity to brag on the Super Air Knife. AND it’s another solution to a labeling problem.

Self-adhesive labels are commonly applied to goods are they travel on high speed conveyors. If they’re going onto a flat, smooth surface (like a box,) it’s pretty easy…they come right off a timed roller with a wheel that presses them in place. This can even work with round containers (like drums, jars, or bottles) by putting an idler on the wheel to take up the slack as it rolls over the rounded surface.

Sometimes, the label needs to go around the corner of a box. This requires the roller to turn that corner. Or two rollers to pull the old “one-two” on the label. Either way, that’s going to slow down the speed at which the conveyor can be run. And time is money.

Enter the Super Air Knife…mount it so it’s blowing at the corner. The laminar, high velocity air flow will then press the label in place on each adjacent surface.

With a laminar curtain of air traveling as fast as 13,500 feet per minute, an EXAIR Super Air Knife is the ideal solution for corner labels.

Another benefit: when supplied with clean, dry air, the Super Air Knife will run darn near indefinitely, maintenance-free. Those rollers get dirty, and the bearings will fail eventually. Same with the idlers, and they’ll need adjusted from time to time.

Super Air Knife Kits include a Shim Set, Filter Separator, and Pressure Regulator…everything you need for long term operation & performance.

The Super Air Knives come in lengths from 3″ to 108″ – if you’d like to discuss how these, or any of our Intelligent Compressed Air Products, can make a difference in your processes, give us a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

Super Ion Air Knife Removes Foil Dots In Lid Cutting Operation

I recently received an inquiry from a food manufacturer about a packaging line they were having issues with.  The plant fills continuous rows of thermo-formed cups which is then sealed with a single foil lid. Once sealed, a machine cuts the row to separate the cups, which creates small scrap pieces of foil. After the cutting operation, they try to collect as much of the waste trim as possible but some small pieces of foil, they call “dots”, cling to the surface of the cup and cutter due to static charge.  The company installed a vacuum collection hood in this area, to try and help keep the foil pieces or any dust from falling onto the cup during the process. While this did help somewhat, some dots would remain and eventually fall off further down the line, making small piles that needed to be manually cleaned to avoid potential jams, which slowed down their production cycle.

The cups are filled and separated on a 44″ wide, mesh-screen conveyor with individual lanes to process multiple rows of cups. After being cut, the cups are moved to the inspection area and then packaged for shipment.  I recommended they mount a 48″ Super Ion Air Knife above and below the cups and direct the airflow to the end where the vacuum collection hood is located. The idea is, as the ions eliminate the charge, the small foil dots will release and the laminar airflow would keep the parts moving toward the vacuum hood, thus removing all foil trim and preventing any piling of trim further down the production line.

The Super Ion Air Knife produces a sheet of ionized air capable of dissipating 5 kV in just a fraction of a second!

EXAIR offers a wide selection of Static Eliminators for use in a variety of industrial processes. If you are experiencing static concerns in a particular area or to discuss a specific process, please contact an application engineer for assistance.

Justin Nicholl
Application Engineer
justinnicholl@exair.com
@EXAIR_JN

%d bloggers like this: