Oil Removal Filters: Never First, Sometimes Last

If you have been around compressed air systems, our blogs, or even optimized installations of point of use compressed air products, you will see point of use filtration in place. These filters come in a plethora of sizes, shapes, and specifications. Here at EXAIR we recommend to always keep a point of use filtration solution in place. This would include an auto-drain filter separator, as well as an oil removal filter.

Oil Removal Filters

So why do we have two instead of one? Could you use just the oil removal filter rather than two? Well, the answer lies in an optimized installation that will also carry with it a lower total cost of ownership. The auto-drain filter separators from EXAIR have a filter element which takes the air to a 5 micron level of filtration. (Except for the model 9004 which filters down to 20 micron.) The Oil Removal Filters have a coalescing filter element which filters to a 0.3 micron level for the finest debris/mists that may be contained within the compressed air stream. One reason for the separation is when a system is oil-free, the finer filtration level may not be needed. Also, by catching the bulk of material with the standard auto-drain filter and then leaving the finer filter to catch the residual amounts liquid that had been finely atomized within the stream of compressed air. This finer filter costs more so using it to catch larger particulate and risking it becoming clogged quicker will increase the total cost of ownership of the point of use compressed air product it is hooked to, hence never first and sometimes last. After the point of use filtration then placing the point of use pressure regulator and solenoid valves are next. This is all a better way to reduce risk of these being damaged from dirt and contaminants in the air lines. Total cost of ownership reductions all point to a better sustainability of any product.

To better showcase the importance of filtration, here’s a brief video I did a while back that visualizes just what one can see out of a compressed air line with minimal moisture introduced.

As you can see, keeping the point of use air filtered protects your process and decreases the total cost of ownership for your compressed air point of use product. If you would like to discuss other ways we can improve efficiency within your facility and help ensure you are getting the longest life out of your products, please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Turn It Off: Saving Compressed Air The Easy Way

A major benefit to utilizing compressed air is the speed at which it can be shut off and re-energized for use – in fact, this can be done instantaneously. Shutting down the supply of compressed air to an application while it is not needed can drastically reduce the compressed air consumption of the process. This is an easy remedy that can produce significant savings.

Think about a place where you have a compressed air blow off with spaces between the parts or dwell times in conveyor travel. What about break times, do operators continue to keep the air on when they leave for a break or even worse, for the day?

Step number four in EXAIR’s Six Steps to Optimization is:

A simple manual ball valve and a responsible operator can provide savings at every opportunity to shut down the airflow. But an automated solution is a no-brainer and can provide significant savings.

Quarter Turn Ball Valves are low-maintenance and easy to install/use.

For a more automated approach, you can add a solenoid valve that would tie into your existing PLC or e-stop circuit, into your compressed air supply lines to aid in turning the compressed air on and off.

For an automated on/off solution can be found by using the EXAIR EFC (Electronic Flow Control). The EFC is made to accept 110V or 220V AC, and convert it to 24V DC to operate a sensor, timer, and solenoid valve. Its multiple operating modes allow you delay on, delay-off, and delay on/off among others. The operating mode can then be set to the specific time necessary for a successful application.

The spaces between parts can be turned into money saved. Every time you reach the end of a batch run, the EFC can turn the air off. You can also add solenoid valves and run them from your machine controls. If the machine is off, or the conveyor has stopped – close the solenoid valve and save the air. The modes are all defined in the video below.

So, take a look, or even better a listen, around the plant and see what you can find that could benefit from turning the air off; even if it is just for a moment it will help put money back into your bottom line.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

 

Leaks and Why They Matter

Leaks can be discussed quite frequently around industrial environments. These can be refrigerant leaks, water leaks, gas leaks, even information leaks. All of these leaks have one thing in common, they all cost the company money in the end. I often think about several classic cartoons when I hear about leaks being fixed as they are found. They can become a little overwhelming like the “Squirrel” from the movie Ice Age 2.

1 – Ice Age 2 – Scrat – Mission Impossible

When it comes down to it, not many leaks create good results, that is why I want to take a second and educate on the costs your facility may be seeing from compressed air leaks. The leaks within an industrial environment can often account for up to 30% of the total compressed air generated.

So let’s take a look at that, the cost of compressed air is derived from the kWh cost the facility pays to the utility company. Here in the Midwest the average cost is around $0.08 / kWh. The equation to convert this to cost per cubic foot of compressed air is shown below. This formula assumes that the compressor generates four standard cubic feet of compressed air per horsepower of compressor. Again this is an industry acceptable assumption.

The size of a leak will determine how much compressed air is wasted, most of these leaks are not even to the audible range for the human ear which leads them to be undetected for long periods of time. A leak that is equivalent to a 1/16″ diameter orifice can result in an annual loss of more than $836.50 USD. While the scale of this number when compared to the annual revenue of a company may be small, the fact remains that this single leak would more than likely not be the only one. This isn’t the only way leaks will cost money though.

Leaks can also generate false demand which can result in pressure drops on a system. When the pressure on a production line drops this could result in unscheduled shutdowns. Often, when a pressure drop is observed the quick answer is to increase the header pressure which causes even more energy to be utilized and even more compressed air will be pushed out of these leaks. That increase in system pressure comes at a price as well. When increasing a system pressure by 2 psi the compressor will consume an additional percent of total input power. This again will hit the bottom line and result in lower efficiency of operation for the facility.

If you hear that distinct hiss of compressed air leaks when you are walking through your facility, or even if you don’t hear the his and you know that a leak detection action plan is not being practiced and want to find out the best ways to get one in place, contact us. We are always willing to help you determine how to lower the leaks in your facility as well as reduce the system pressure required to keep your lines up and running by implementing engineered solutions at the point of use.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

1 – Ice Age 2 – Mission Impossible Scrat – retrieve from YouTube – https://www.youtube.com/watch?v=S-HniegbnFs

 

Back To The Basics: Process Improvement Basics

We understand that it is more important than ever to realize savings within manufacturing processes. EXAIR can reduce compressed air consumption and provide simple ROI in a matter of weeks in MANY cases.

In the hustle and bustle of the daily grind wherever you are, there are certain processes that become muscle memory for you and certain processes that just work and don’t need any attention. Whether it be a login process for your computer network, the number of steps it takes to fill your coffee cup, or the compressed air applications in your facility.

You know what I am talking about, these items begin to get glanced over and often become overlooked. When going through process improvements or troubleshooting, it is easy to overlook processes which are not causing trouble or that have become “acceptable” because they are producing. EXAIR firmly believes compressed air applications are ripe for improvement, and our product lines are built to replace inefficient compressed air products with engineered and efficient solutions.

When evaluating a process for improvement creating a baseline is the necessary start. With this, we can then start to draw a realistic target of where the process needs to be in order to be optimized and document the changes from our starting baseline.

Much like the 6 Steps to Compressed Air Optimization, which starts with measuring compressed air consumption to provide a baseline.  Sometimes, this may require the installation of a Digital Flowmeter, others it may include taking advantage of our Efficiency Lab service for us to get a baseline of what air consumption and other key performance indicators are for your application.

Looking to “go green?” We can help.

Once we have the baseline and a target, we can then begin to design an improvement process. Whether this is implementing better controls for the air, such as pressure regulators, or implementing controllers such as the Electronic Flow Control, it may even be simply installing an engineered solution.  Once an improvement has been implemented we can then go on to the next testing phase to again gather data to see how much air was saved from the baseline.

EXAIR’s Free Efficiency Lab

Once the performance of the new process is determined then we can take the new cost of ownership numbers and give a simple return on investment back to determine what the actual savings by implementing these process improvements have amounted to.

The below example is from a customer who had already improved their static elimination application by using our Super Ion Air Knife instead of a homemade pipe with drilled holes. They further optimized the application with our Electronic Flow Control.

If you would like to talk through methods for process improvement or how we can help you determine these costs, please reach out.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF