Oil Removal Filters: Never First, Sometimes Last

If you have been around compressed air systems, our blogs, or even optimized installations of point of use compressed air products, you will see point of use filtration in place. These filters come in a plethora of sizes, shapes, and specifications. Here at EXAIR we recommend to always keep a point of use filtration solution in place. This would include an auto-drain filter separator, as well as an oil removal filter.

Oil Removal Filters

So why do we have two instead of one? Could you use just the oil removal filter rather than two? Well, the answer lies in an optimized installation that will also carry with it a lower total cost of ownership. The auto-drain filter separators from EXAIR have a filter element which takes the air to a 5 micron level of filtration. (Except for the model 9004 which filters down to 20 micron.) The Oil Removal Filters have a coalescing filter element which filters to a 0.3 micron level for the finest debris/mists that may be contained within the compressed air stream. One reason for the separation is when a system is oil-free, the finer filtration level may not be needed. Also, by catching the bulk of material with the standard auto-drain filter and then leaving the finer filter to catch the residual amounts liquid that had been finely atomized within the stream of compressed air. This finer filter costs more so using it to catch larger particulate and risking it becoming clogged quicker will increase the total cost of ownership of the point of use compressed air product it is hooked to, hence never first and sometimes last. After the point of use filtration then placing the point of use pressure regulator and solenoid valves are next. This is all a better way to reduce risk of these being damaged from dirt and contaminants in the air lines. Total cost of ownership reductions all point to a better sustainability of any product.

To better showcase the importance of filtration, here’s a brief video I did a while back that visualizes just what one can see out of a compressed air line with minimal moisture introduced.

As you can see, keeping the point of use air filtered protects your process and decreases the total cost of ownership for your compressed air point of use product. If you would like to discuss other ways we can improve efficiency within your facility and help ensure you are getting the longest life out of your products, please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Video Blog: Importance of Point-of-Use Filtration

When operating any of your Intelligent Compressed Air Products, something that often gets overlooked is the importance of delivering clean, dry air to those point-of-use products. Many of our products have very tight orifices to help reduce the volume of compressed air they consume. In addition, most have no moving parts to wear out and require no maintenance. That is, unless you’re using unfiltered compressed air.

Rust and scale are commonly found within the distribution system inside your facility. Old iron pipe and receiver tanks are the common culprits. A common misconception is that the air is already filtered as it exits the compressor. While this may be true, there’s still places in the distribution system that can cause issues downstream.

To eliminate the hassle of taking things apart to periodically clean, EXAIR recommends installing a point-of-use filter for all of our Intelligent Compressed Air Products. Kits are available for purchase that come with a properly sized filter to ensure your air is sufficiently clean. To see how quickly debris can clog your products, check out my video below demonstrating the difference between dirty and clean air with a Model 110006 6″ Super Air Knife.

If you’ve already purchased and installed products without filters, it’s never to late to go back and install one. Contact an EXAIR Application Engineer today and we’ll be happy to help you determine the proper size for the volume of air you’re products need.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

What’s The Big Deal About Clean Air?

Compressed air isn’t called manufacturing’s “Fourth Utility” (the first three being electricity, water, and natural gas) for nothing. Pneumatic tools are popular because they’re often so much lighter than their electric counterparts. Compressed air can be stored in receiver tanks for use when other power supplies are unavailable or not feasible. Many compressed air operated products can be made to withstand environmental factors (high/low temperature, corrosive elements, atmospheric dust, oil, other contaminants, etc.,) that would make electric devices very expensive, unwieldy, or impractical.

One of the most valuable considerations, though, is that your compressed air system is, by and large, under your control.  The type and capacity of your air compressor can be determined by your specific operational needs.  The header pressure in your supply lines is based on the applications that your air-operated devices are used for.  And the performance & lifespan of every single component in your compressed air system is determined by the care you take in maintaining it.

I covered the importance of compressed air system maintenance in a blog a while back…today, I want to focus on clean air.  And, like the title (hopefully) makes you think, it’s a REALLY big deal.  Consider the effects of the following:

Debris: solid particulates can enter your air system through the compressor intake, during maintenance, or if lines are undone and remade.  If you have moisture in your air (more on that in a minute,) that can promote corrosion inside your pipes, and rust can flake off in there.  Almost all of your air operated products have moving parts, tight passages, or both…debris is just plain bad for them.  And if you use air for blow off (cleaning, drying, etc.,) keep in mind that anything in your compressed air system will almost certainly get on your product.

Your compressed air system may be equipped with a main filter at the compressor discharge.  This is fine, but since there is indeed potential for downstream ingress (as mentioned above,) point-of-use filtration is good engineering practice.  EXAIR recommends particulate filtration to 5 microns for most of our products.

Water: moisture is almost always a product of condensation, but it can also be introduced through faulty maintenance, or by failure of the compressor’s drying or cooling systems.  Any way it happens, it’s also easy to combat with point-of-use filtration.

EXAIR includes an Automatic Drain Filter Separator in our product kits to address both of these concerns.  A particulate filter element traps solids, and a centrifugal element “spins” any moisture out, collecting it in the bowl, which is periodically drained (automatically, as the name implies) by a float.

Point of use filtration is key to the performance of your compressed air products, and their effectiveness. Regardless of your application, EXAIR has Filter Separators to meet most any need.

Oil: many pneumatic tools require oil for proper operation, so, instead of removing it, there’s going to be a dedicated lubricator, putting oil in the air on purpose.  Optimally, this will be as close to the tool as possible, because not all of your compressed air loads need oil…especially your blow offs.  If, however, a blow off device is installed downstream of a lubricator (perhaps due to convenience or necessity,) you’ll want to do something about that oil. Remember, anything in your system will get blown onto your product.

If this is the case, or you just want to have the cleanest air possible (keep in mind there is no downside to that,) consider an EXAIR Oil Removal Filter.  They come in a range of capacities, up to 310 SCFM (8,773 SLPM,) and the coalescing element also offers additional particulate filtration to 0.03 microns.

In closing, here’s a video that shows you, up close and personal, the difference that proper filtration can make:

If you’d like to discuss or debate (spoiler alert: I’ll win) the importance of clean air, and how EXAIR can help, give me a call.

Russ Bowman
Application Engineer
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Compressed Air Accessories – Filters and Regulators – The Rest of the Solution

IMG_5696
EXAIR Regulator with gauge and Filter/Separator

Many times in the stories that are written in our daily blogs, we espouse the many benefits of installing and using EXAIR made products into our many customers’ compressed air-based applications. From the guy who has a small shop in his home garage using our Atto Super Air Nozzle to much larger applications where customers use our 84” Long Super Air Knives to do such things as drying cast Acrylic Sheets used in tub and shower surrounds, the message is a very consistent one. Customers benefit by saving money, increasing the safety level of an application, reducing sound levels and improving productivity.  There’s no doubt that our customers will excel in these areas.

Knowing there is much more to a compressed air system than just point of use products, lets shed a little light on the other “parts” of a typical system set-up. Those would be the compressed air filter / separators and the pressure regulators that are a highly recommended part of a good installation. But why are they so highly recommended? What exactly is their role and why would anyone want or need to install them?

First, the blunt realities of compressed air and its relative “un-clean” condition once it arrives at the point of use. Since compressed air a utility that is produced in-house, the quality and quantity available will vary widely from facility to facility. And since it is not a regulated utility such as gas or electricity are, there are no universal minimums of quality that compressed air must meet before sent out to the distribution system. Yes, of course, companies are all the time getting better at this part, but many still operate with older, iron pipe systems that produce rust and scale which wreak havoc on the components within mechanical products that use compressed air as their power source. The point is that you are never sure of the quality of the air you will get at the point of use, so install a compressed air filter near that point to keep the debris out of your Air Knife, Nozzle, Line Vac or even other components like solenoid valves, air motors and the like. Believe me when I say it is much easier to un-screw a bowl from a filter housing and change an element than it is to disassemble an air motor or an 84” long Super Air Knife because rust migrated in from the pipes. So it is quite safe to say that an ounce of prevention in this case is worth a pound of cure!

Second, the discussion turns to the Regulator part of the equation. As many know, our products and those of other pneumatic product manufacturers have a certain set of specifications regarding performance at stated input pressures. But what if your application doesn’t require that “full, rated performance”? Maybe instead of needing two pounds of force, you only need one pound? In fact, if you provided two pounds of blowing force, you would end up “over-blowing” your target. By that, I mean you cause damage to the target or other surrounding items in the application. Or, perhaps blowing to hard (or sucking too hard in the case of a Line Vac or E-vac) might cause the vessel or the material you are picking up to collapse or deform (due to too much power).  There is also the concern about using more energy than one really needs to in order to achieve the desired effect in an application. In other words, if you can achieve your goals with only 40 PSIG, then why would you ever use 80 PSIG to accomplish the goal? By reducing your compressed air from 80 down to 40 PSIG, you can easily reduce the air consumption of the “engineered” solution by another 40% + …………that’s the cherry on top of the cake when you compare the benefits of simply “bolting on” the solution of an engineered air nozzle vs. an open pipe in the first place. Then there is the issue of taking advantage of the pressure differential (from 80 down to 40 PSIG) that creates a little bit more air volume capacity. At 80 PSIG, your compressed air to free air volume ratio is 6.4:1. At 40 PSIG, it is only 3.7:1. The net effect is you effectively have an overall larger volume of air at the disposal of the application which is always a good thing.

Regulating pressure is definitely warranted given the benefits that compliment the operation of the core EXAIR products.

If you need a deeper understanding about how EXAIR’s products can help your application, feel free to contact us and we will do our best to give you a clear understanding of all the benefits that can be had by our products’ use as well as proper implementation of accessory items such as compressed air filters and regulators.

Neal Raker, International Sales Manager
nealraker@exair.com
@EXAIR_NR
www.EXAIR.com