Air Quality Classes – Understanding ISO 8573-1:2010

ISO 8573-1:2010 is the international standard for Air Quality Classes. It lays the ground rules for acceptable levels of pollutants, particulate, moisture, and oil in a compressed air source.

This slideshow requires JavaScript.

Specification Example: ISO 8573-1:2010 [2:2:1]

This indicates Class 2 for particles, Class 2 for water, and Class 1 for oil.

Though the standard has detailed standards for maximum particle size, maximum pressure dew point and maximum oil content for different industries and/or environments (see Slide show above) we can generalize a bit and express the levels of air quality like this:

Plant Air – general plant compressed air used for air tools, nozzles etc.
Instrument Air – found in laboratories, paint and powder coat booths, used for climate control.
Process Air – used in food and pharmaceutical applications, electronics applications.
Breathing Air – used for breathing respirators, breathing tanks and hospital air systems.

Achieving the different levels of air quality can be done with 3 basic types of filtration.
     1. Particulate – a filter element removes particles larger than the opening in the filter material. Typically done with particles greater than 1 micron.
     2. Coalescing – use different methods to capture the particles; 1) direct interception – works like a sieve, 2) Inertial impaction – collision with filter media fibers, 3) Diffusion – particles travel in a spiral motion and are captured in the filter media.
     3. Adsorption – the filter element holds the contaminants by molecular adhesion.

Filters
EXAIR FILTER SEPARATORS

The higher the class your air needs to be the more of these filtration methods you will use. Adsorption will remove more and finer particles than a simple particulate filter. And many applications will use a combination of these methods.

EXAIR products, all of which need a source of “clean, dry air” will operate very well utilizing a source of plant air and only a particulate filter. Your process, dictate if you need to supply additional filtration methods for better air quality. For example, an automotive plant using compressed air to blow parts off will not need the kind of filtration a food handling facility will need while blowing a food product off. If you are using a lubricated compressor or have lubricant in your compressed air lines from another source, you will want to use a coalescing oil removal filter.

EXAIR stocks 5 micron particulate filters which are properly sized for each individual product as an option for our customers if they choose. We also stock coalescing oil removal filters for customers who may need to remove oil from the air. Replacement filter elements are also available and should be replaced at least twice a year, depending on the quality of your air.

Oil Removal Filter
EXAIR Oil Removal Filter

Remember to ask about filtration if you have any concerns about your air quality. We can assist in sizing up the proper filters to get the air quality we recommend for proper operation and longevity of our products. 

If you would like to see how we might be able to improve your process or provide a solution for valuable savings, please contact one of our Application Engineers.

Jordan Shouse
Application Engineer
Send me an email
Find us on the Web 
Like us on Facebook
Twitter: @EXAIR_JS

Images Courtesy of  the Compressed Air Challenge

The Importance of Compressed Air Filtration

In this blog, I would like to turn your attention to our accessories that support our Intelligent Compressed Air® Products; the Filter Separator and the Oil Removing Filter.  EXAIR products use compressed air to coat, conserve, cool, convey and clean.  So, to keep our products running properly and efficiently, we need to supply them with clean, pressurized air.  If we look at the two types of filters that we offer, we can see how they can play an important part in your compressed air system.

Filter Separators

Filter separators are used to remove bulk liquid and contamination from the compressed air stream.  They have a 5-micron filter and work very well if you get a slug of liquid in your compressed air system.  They use mechanical separation to remove the large particles of dirt and water from the air stream.

Most facilities use some type of compressed air dryer in their system to dry and condition the compressed air.  But, if a system failure occurs, then water, oil, and dirt can be pushed into the compressed air lines and perhaps into your EXAIR products.

Even if you have good quality air, it is still important to keep your products protected.  I would consider the Filter Separator as a minimum level of protection that should be used.

Oil Removal Filters

The Oil Removal Filters are used to keep the compressed air even cleaner yet.  They work great at removing very small particles of dirt and oil.  The 0.03-micron media of the Oil Removal Filter is designed to “coalesce” the fine liquid particles into large droplets.

Thus, allowing gravity to remove it from the compressed air stream.  Some common issues allow for dirt and oil particles to collect in “dead” zones within the air lines.  As it piles up and grows, portions can break off and get into the air stream affecting pneumatic devices.

The Oil Removal Filter will be able to help eliminate this long-term problem in your compressed air system.  As a note, Oil Removal Filters are not great for bulk separation.  If you have a system with lots of water, you should use a Filter Separator in front of the Oil Removal Filter to optimize the filtration.

Now that we went through each type, how do we use them together to get the best supply of compressed air?  We always want them to be installed upstream of a Regulator.  This is because the velocity is lower at higher pressures.

Lower velocities mean lower pressure drops which is great for supplying the proper amount of compressed air to EXAIR products.  If you are using a combination of both filters, the Filter Separator will be upstream of the Oil Removal Filter.  The Filter Separator will knock down the large particles and liquid slugs allowing the Oil Removal Filter to remove the smaller droplets and particles.

EXAIR offers a range of sizes to help support our products.  They range from ¼” NPT ports up to 1 ½” NPT ports.  The size of the ports determines the flow rating for each unit.  EXAIR also has Mounting Brackets to mount the filters to walls or frames.

To support each type of filter, we have replacement elements and bowl kits.  Since the function of the filter is to remove debris, we recommend to change the filter element once a year or when it reaches 10 PSID pressure drop; whichever comes first.

If we can analyze the compressed air systems, I would like to categorize it into a good and premium quality.  For the good quality of compressed air, you can have the compressed air run through the Filter Separator.  For the premium quality of compressed air, you can have your compressed air run through the Filter Separator and then through the Oil Removal Filter.

With clean quality air, your EXAIR products will provide you with effective, long-lasting performance without maintenance downtime.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

6 Basic Steps for Good Air Compressor Maintenance (And When to Do Them)

A production equipment mechanic with the 76th Maintenance Group, takes meter readings of the oil pressure and temperature, cooling water temperature and the output temperature on one of two 1,750 horsepower compressors. (Air Force photo by Ron Mullan)

In one of my previous jobs, I was responsible for the operation of the facility.  One of my biggest responsibilities was the air compressor because it supplied pressurized air though out the facility to feed the pneumatic systems.  Like with many industries, the compressor system is the life blood of the company.  If the compressor fails, the whole facility will stop.  In this blog, I will share some preventative maintenance items and schedules for your air compressors.

Because the cost to make compressed air is so expensive, compressed air systems are considered to be a fourth utility.  And with any important investment, you would like to keep it operating as long and efficiently as possible.  To do this, it is recommended to get your air compressor a “checkup” every so often.  I will cover some important items to check as well as a recommended schedule for checking.  Depending on the size of your air compressors, some items may or may not apply.

1. Intake filter:  The intake filter is used to clean the air that is being drawn into the air compressor.  Particles can damage the air pump mechanisms, so it is important to have the proper filtration level.  But, as the intake filter builds up with debris, the pressure drop will increase.  If they are not properly monitored and cleaned, the air flow will be restricted.  This can cause the motors to operate harder and hotter as well as reduce the efficiency of the air compressor.

2. Compressor Oil:  This would be for flooded screws and reciprocating compressors that use oil to operate the air pump.  Most systems will have an oil sight gauge to verify proper levels.  In larger systems, the oil can be checked for acidity which will tell you the level at which the oil is breaking down.  The oil, like in your car, has to be changed after so many hours of operation.  This is critical to keep the air pump running smoothly without service interruptions.

3. Belts and Couplings:  These items transmit the power from the motor to the air pump.  Check their alignment, condition, and tension (belts only) as specified by the manufacturer.  You should have spares on hand in case of any failures.

4. Air/Oil Separators:  This filter removes as much oil from the compressed air before it travels downstream.  It returns the oil back to the sump of the air compressor.  If the Air/Oil Separator builds too much pressure drop or gets damaged, excess oil will travel downstream.  Not only will the air pump lose the required oil level, but it will also affect the performance of downstream parts like your air dryer and after cooler.

5. Internal filters:  Some air compressors will come with an attached refrigerated air dryer.   With these types of air compressors, they will place coalescing filters to remove any residual oil.  These filters should be checked for pressure drop.  If the pressure drop gets too high, then it will rob your compressed air system of air pressure.  Some filters come with a pressure drop indicator which can help you to determine the life of the internal filter element.

6. Unloader valve:  When an air compressor unloads, this valve will help to remove any compressed air that is trapped in the cavity of the air pump.  So, when the air compressor restarts, it does not have to “work” against this “trapped” air pressure.  If they do not fully unload, the air compressor will have to work much harder to restart, wasting energy.

Preventative maintenance is very important, and checks need to be performed periodically.  As for a schedule, I created a rough sequence to verify, change, or clean certain items that are important to your air compressor.  You can also check with your local compressor representative for a more detailed maintenance schedule.

Daily:

  • After stopping, remove any condensate from the receiver tank.
  • Check oil level.

Monthly:

  • Inspect cooling fins on air pump. Clean if necessary
  • Inspect oil cooler. Clean if necessary

Quarterly:

  • Inspect the inlet air filter. Clean or replace if necessary.
  • Check the belt for tension and cracks. Tighten or replace.
  • Check differential pressure indicators on outlet compressed air filters.

Yearly:

  • Replace Air Inlet Filter
  • Replace the air-oil separator
  • Test safety valves and unloader valve
  • Replace compressed air filters
  • Change oil
  • Grease bearings if required

Keeping your air compressor running optimally is very important for pneumatic operations and energy savings.  I shared some important information above to assist.  Another area to check would be your pneumatic system downstream of the air compressor.  EXAIR manufactures engineered products that can reduce air consumption rates.  You can contact an Application Engineer to discuss further on how we can save you energy, money, and your air compressor.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

 

Compressed Air Demand Preventative Maintenance

Preventative maintenance for compressed air demand products is a simple as keeping the compressed air clean and condensate free. It is simple because all it takes is a filter and keeping the filter element clean, just like you do for your home furnace and/or air conditioner.

I received a phone call from a customer that needed replacement elements for EXAIR filters.  They were using four different models of Filter Separators and Oil Removal Filters.  The filters had been in service for one year, and the internal elements needed to be changed.  They requested a quote to replenish the replacement elements that they stocked as a preventative measurement.  What an idea!

Majority of EXAIR products use compressed air for cleaning, cooling, conveying, static elimination, coating and more.  To help keep your EXAIR products running efficiently, it is important to supply them with clean, dry, pressurized air.  EXAIR offers a line of Filter Separators and Oil Removal Filters to supply quality air to your equipment.  In this blog, I will explain the two types of filters that we carry and the maintenance requirements.  The filters and preventative measures can play an important part in your compressed air system.

Filter Separators are used to remove bulk liquid and contamination from the compressed air stream.  They utilize a 5-micron filter with a mechanical separation to help remove large amounts of dirt and water.  This type of filter would be considered the minimum requirement for filtration.  Most of the Filter Separators come with an auto-drain to automatically dispense the collection of oil and water.  EXAIR offers a variety of port sizes and flow ranges to meet your pneumatic flow requirement.  For maintenance, the filter elements should be changed once a year or when the pressure drop reaches 10 PSID, whichever comes first.  I created a list in Table 1 showing the correct replacement element kits for each model number.  And for any reason, if the bowl or internal components get damaged, we also have Rebuild Kits as well.  Just remember, the air quality is very important for longevity and functionality for pneumatic products and even for EXAIR products.

The Oil Removal Filters can make your compressed air even cleaner.  They work great at removing very small particles of dirt and oil.  They are made from glass fibers and can remove particles down to 0.01 micron.  They are designed to collect small particles and to coalesce the liquid particles into a large droplet for gravity to remove.  Because of the fine matrix, Oil Removal Filters are not great for bulk separation.  If you have a system with lots of oil and water, I would recommend to use the Filter Separator upstream of the Oil Removal Filter.  As with the Filter Separator, the filter element should be changed once a year or at a pressure drop of 10 PSID.  EXAIR also offers a variety of port sizes and flow ranges.  Table 1 below shows the replacement Element Kits as well as the Rebuild Kits.  If the application requires very clean compressed air, the Oil Removal Filter should be used.

Table 1

By using EXAIR filters, they will clean your compressed air to prevent cross contamination, performance issues, and premature failures.  As an ounce of prevention, you can add the replacement elements in stock and enter them in your preventative maintenance program.  With clean quality air, your pneumatic system and EXAIR products will provide you with effective, long-lasting performance without maintenance downtime.  If you would like to discuss the correct type of filters to use in your application, you can speak with an Application Engineer.  We will be happy to help you.

John Ball
Application Engineer
Email: johnball@exair.com
Twitter: @EXAIR_jb

What’s The Big Deal About Clean Air?

Compressed air isn’t called manufacturing’s “Fourth Utility” (the first three being electricity, water, and natural gas) for nothing. Pneumatic tools are popular because they’re often so much lighter than their electric counterparts. Compressed air can be stored in receiver tanks for use when other power supplies are unavailable or not feasible. Many compressed air operated products can be made to withstand environmental factors (high/low temperature, corrosive elements, atmospheric dust, oil, other contaminants, etc.,) that would make electric devices very expensive, unwieldy, or impractical.

One of the most valuable considerations, though, is that your compressed air system is, by and large, under your control.  The type and capacity of your air compressor can be determined by your specific operational needs.  The header pressure in your supply lines is based on the applications that your air-operated devices are used for.  And the performance & lifespan of every single component in your compressed air system is determined by the care you take in maintaining it.

I covered the importance of compressed air system maintenance in a blog a while back…today, I want to focus on clean air.  And, like the title (hopefully) makes you think, it’s a REALLY big deal.  Consider the effects of the following:

Debris: solid particulates can enter your air system through the compressor intake, during maintenance, or if lines are undone and remade.  If you have moisture in your air (more on that in a minute,) that can promote corrosion inside your pipes, and rust can flake off in there.  Almost all of your air operated products have moving parts, tight passages, or both…debris is just plain bad for them.  And if you use air for blow off (cleaning, drying, etc.,) keep in mind that anything in your compressed air system will almost certainly get on your product.

Your compressed air system may be equipped with a main filter at the compressor discharge.  This is fine, but since there is indeed potential for downstream ingress (as mentioned above,) point-of-use filtration is good engineering practice.  EXAIR recommends particulate filtration to 5 microns for most of our products.

Water: moisture is almost always a product of condensation, but it can also be introduced through faulty maintenance, or by failure of the compressor’s drying or cooling systems.  Any way it happens, it’s also easy to combat with point-of-use filtration.

EXAIR includes an Automatic Drain Filter Separator in our product kits to address both of these concerns.  A particulate filter element traps solids, and a centrifugal element “spins” any moisture out, collecting it in the bowl, which is periodically drained (automatically, as the name implies) by a float.

Point of use filtration is key to the performance of your compressed air products, and their effectiveness. Regardless of your application, EXAIR has Filter Separators to meet most any need.

Oil: many pneumatic tools require oil for proper operation, so, instead of removing it, there’s going to be a dedicated lubricator, putting oil in the air on purpose.  Optimally, this will be as close to the tool as possible, because not all of your compressed air loads need oil…especially your blow offs.  If, however, a blow off device is installed downstream of a lubricator (perhaps due to convenience or necessity,) you’ll want to do something about that oil. Remember, anything in your system will get blown onto your product.

If this is the case, or you just want to have the cleanest air possible (keep in mind there is no downside to that,) consider an EXAIR Oil Removal Filter.  They come in a range of capacities, up to 310 SCFM (8,773 SLPM,) and the coalescing element also offers additional particulate filtration to 0.03 microns.

In closing, here’s a video that shows you, up close and personal, the difference that proper filtration can make:

If you’d like to discuss or debate (spoiler alert: I’ll win) the importance of clean air, and how EXAIR can help, give me a call.

Russ Bowman
Application Engineer
Visit us on the Web
Follow me on Twitter
Like us on Facebook

The Importance Of Air Compressor System Maintenance

It should go without saying, but proper operation of anything that has moving parts will depend on how well it’s maintained.  Compressed air systems are certainly no exception; in fact; they’re a critical example of the importance of proper maintenance, for two big reasons:

*Cost: compressed air, “the fourth utility,” is expensive to generate.  And it’s more expensive if it’s generated by a system that’s not operating as efficiently as it could.

*Reliability: Many industrial processes rely on clean or clean & dry air, at the right pressure, being readily available:

  • When a CNC machine trips offline in the middle of making a part because it loses air pressure, it has to be reset.  That means time that tight schedules may not afford, and maybe a wasted part.
  • The speed of pneumatic cylinders and tools are proportional to supply pressure.  Lower pressure means processes take longer.  Loss of pressure means they stop.
  • Dirt & debris in the supply lines will clog tight passages in air operated products.  It’ll foul and scratch cylinder bores.  And if you’re blowing off products to clean them, anything in your air flow is going to get on your products too.

Good news is, the preventive maintenance necessary to ensure optimal performance isn’t all that hard to perform.  If you drive a car, you’re already familiar with most of the basics:

*Filtration: air compressors don’t “make” compressed air, they compress air that already exists…this is called the atmosphere, and, technically, your air compressor is drawing from the very bottom of the “ocean” of air that blankets the planet.  Scientifically speaking, it’s filthy down here.  That’s why your compressor has an inlet/intake filter, and this is your first line of defense. If it’s dirty, your compressor is running harder, and costs you more to operate it.  If it’s damaged, you’re not only letting dirt into your system; you’re letting it foul & damage your compressor.  Just like a car’s intake air filter (which I replace every other time I change the oil,) you need to clean or replace your compressor’s intake air filter on a regular basis as well.

*Moisture removal: another common “impurity” here on the floor of the atmospheric “ocean” is water vapor, or humidity.  This causes rust in iron pipe supply lines (which is why we preach the importance of point-of-use filtration) and will also impact the operation of your compressed air tools & products.

  • Most industrial compressed air systems have a dryer to address this…refrigerated and desiccant are the two most popular types.  Refrigerant systems have coils & filters that need to be kept clean, and leaks are bad news not only for the dryer’s operation, but for the environment.  Desiccant systems almost always have some sort of regeneration cycle, but it’ll have to be replaced sooner or later.  Follow the manufacturer’s recommendations on these.
  • Drain traps in your system collect trace amounts of moisture that even the best dryer systems miss.  These are typically float-operated, and work just fine until one sticks open (which…good news…you can usually hear quite well) or sticks closed (which…bad news…won’t make a sound.)  Check these regularly and, in conjunction with your dryers, will keep your air supply dry.

*Lubrication: the number one cause of rotating equipment failure is loss of lubrication.  Don’t let this happen to you:

  • A lot of today’s electric motors have sealed bearings.  If yours has grease fittings, though, use them per the manufacturer’s directions.  Either way, the first symptom of impending bearing failure is heat.  This is a GREAT way to use an infrared heat gun.  You’re still going to have to fix it, but if you know it’s coming, you at least get to say when.
  • Oil-free compressors have been around for years, and are very popular in industries where oil contamination is an unacceptable risk (paint makers, I’m looking at you.)  In oiled compressors, though, the oil not only lubricates the moving parts; it also serves as a seal, and heat removal medium for the compression cycle.  Change the oil as directed, with the exact type of oil the manufacturer calls out.  This is not only key to proper operation, but the validity of your warranty as well.

*Cooling:  the larger the system, the more likely there’s a cooler installed.  For systems with water-cooled heat exchangers, the water quality…and chemistry…is critical.  pH and TDS (Total Dissolved Solids) should be checked regularly to determine if chemical additives, or flushing, are necessary.

*Belts & couplings: these transmit the power of the motor to the compressor, and you will not have compressed air without them, period.  Check their alignment, condition, and tension (belts only) as specified by the manufacturer.  Keeping spares on hand isn’t a bad idea either.

Optimal performance of your compressed air products literally starts with your compressor system.  Proper preventive maintenance is key to maximizing it.  Sooner or later, you’re going to have to shut down any system to replace a moving (or wear) part.  With a sound preventive maintenance plan in place, you have a good chance of getting to say when.

If you’d like to talk about other ways to optimize the performance of your compressed air system,  give me a call.

Russ Bowman
Application Engineer
Find us on the Web
Follow me on Twitter
Like us on Facebook

 

Image courtesy of U.S. Naval Forces Central Command/U.S. Fifth Fleet, Creative Commons License 

High Temperature Application Needs High Temperature Filtration

image
Two 42″ stainless steel Super Air Knives in need of proper filtration of the compressed air supply

In an undisclosed application, two 42” stainless steel Super Air Knives (shown above) are positioned to provide a needed blowoff function.  The exact purpose of the blowoff wasn’t revealed, but this OEM requested various shims for these knives along with suitable filtration.  Shims, which can be field installed into the knife to adjust the air gap and air flow due to different thicknesses, will directly affect the volume of air and force out of the knife. Determining model numbers and pricing for the requested shims is straightforward, but providing the required filtration proved to be a bit more challenging.

Whenever considering filtration, the first step in product selection is to consider what needs to be filtered from the air; for example, water, dirt, or oil.  This customer needed a method to remove both water and dirt, as well as oil particulate from the compressed air.

The next step is to consider the potential greatest flow (required by the knives) through the filters, which, in turn, requires having knowledge of the intended operating pressure for the application and the air gap set by the shims.  These knives are to be operated at a maximum pressure of 87 PSIG, creating a maximum flow potential of about 260-520 SCFM depending on the chosen shim.  (3.1 SCFM per inch of length for each knife when operating at 87 PSIG * 42 inches per knife * 2 knives = ~260 SCFM;  6.2 SCFM per inch of length for each knife when operating at 87 PSIG and having the additional shims installed * 42 inches per knife * 2 knives = ~520 SCFM)

Lastly, we have to give consideration to the environment into which the filters will be installed.  For example, will the filters be exposed to any kind of wash-down process using specific chemicals; and, what is the ambient temperature in the environment?  The purpose of these questions is to uncover any environmental specifications or limitations.

In this application, those questions uncovered a need to place these filters into a hot environment with temperatures up to 300°F.  Given that our stock filter options have maximum operating temperatures of 120°F, we needed to explore an application-specific solution.

So, the Engineering team at EXAIR sprung into gear to find a suitable, high temperature option, which we in turn presented to the OEM user, offering a specific solution for their specific application.  The high temperature filters for this application are suitable for temperatures up to 450°F with flow rates as high as 600 SCFM at 100 PSIG – a perfect fit!

If you have application-specific needs, we’re happy to discuss and brainstorm potential solutions.

Lee Evans
Application Engineer
LeeEvans@EXAIR.com
@EXAIR_LE