Intelligent Compressed Air®: Common Compressor Room Mistakes, And How To Avoid Them

While we don’t sell, install, or service air compressors, EXAIR Intelligent Compressed Air Products run on compressed air, so helping you get the most out of your compressed air system is important to us. Today, we’re starting where it all begins: the compressor room.

Some of the mistakes that are commonly made in the compressor room are by design, and others are operational. My colleague Tyler Daniel wrote a great blog on design considerations recently, so I’m going to focus on the operational aspects, which include maintenance…and maybe some minor design stuff:

  • Poor ventilation: Air compressors get hot. They’ve got a lot of moving parts, and many of those parts are moving under a great amount of force (pressure is literally defined as force per unit area), and at a high rate of speed. Add in the heat of compression (it takes energy to compress air, and that energy has to go somewhere, something another colleague, John Ball, explains here), to all that friction and you come up with a TREMENDOUS amount of heat. An industry thumbrule, in fact, states that over 2500 Btu/hr of heat is generated, PER HORSEPOWER, by a typical industrial air compressor. If the compressor room isn’t big enough, you’ll need an exhaust fan capable of removing all that heat.
  • Lack of filtration: Take a good, full breath in through your nose, right now. Did you smell anything unpleasant or irritating? I hope not…clean air is a “must” for your lungs (and the rest of your body), and the same is true for your air compressor (and the rest of your compressed air system). Keeping up with the maintenance on the intake filter is literally “starting where it all begins”…from the 1st paragraph.
  • Not removing moisture: Water & water vapor will have an adverse effect on many components of your compressed air system: it’ll cause rust in iron pipes, damage the seals in air cylinders, motors, tools, etc., and if you use it for blow off or conveying, it’ll contaminate your product. We’ve writtenagain and again…about the importance of dryers, and which type might be best for you.
  • Tolerating leaks: The compressor room is loud, so leaks are going to be pretty big before you can hear them. And to add insult to injury, the vibration of a running compressor makes the compressor room a prime location for them to occur. Even one small leak that you couldn’t hear in a quieter area will cost you over $100 over the course of the year, and maybe only take minutes to fix. Good news is, even if you can’t hear them, they ALL make an ultrasonic signature, and we’ve got something for that.
EXAIR Model 9061 Ultrasonic Leak Detector “finds them all, big or small!”
  • Ignoring maintenance. If you don’t schedule planned maintenance, your equipment will schedule corrective maintenance for you…oftentimes at greater expense, and with no regard to your schedule.
    • Moving metal parts that make metal-to-metal contact (or that have very tight spacing tolerances) HAVE to be lubricated properly. If you run low on oil, or let it get dirty or emulsified, severe damage will follow. Keeping an eye on the oil level, and changing it (and the filter) at the manufacturer’s recommended intervals, is critical.
    • Emulsified or otherwise contaminated oil can damage seals, gaskets, and o-rings. That’s obviously a big problem for the compressor, and when it carries over into the header, it’s a big problem for pneumatic cylinders & tools as well. Periodic sampling & analysis of your oil can provide timely notice of issues that can be corrected before they become catastrophic failures.
    • Depending on the type of compressor, and its drive system, the manufacturer’s maintenance recommendations may also include:
      • Checking coupling or belt alignment of the drive.
      • Checking bolts for loosening due to vibration (a “necessary evil”, especially with reciprocating compressors).
      • Adjusting the pistons to maintain valve plate clearance.
      • Tightening or replacing the mounts & vibration pads.

If you’d like to find out more about how EXAIR Corporation can help you get the most out of your compressed air system, give me a call.

Russ Bowman, CCASS

Application Engineer
EXAIR Corporation
Visit us on the Web
Follow me on Twitter
Like us on Facebook

Image courtesy of PEO ACWA Some rights reserved Creative Commons Attribution 2.0 Generic (CC BY 2.0)

Take It All In – Just Filter It

The Nose – Only the Nose Knows

Take a nice deep breath as you read this. In through the nose. If you are like me right now, due to Fall allergies you’ll have a little bit of a restriction, hold it for just a second and then breathe out through the mouth. The body is an amazing thing, when we breathe in through our nose the body has some natural filtration built in that is also known as nose hair. While not the most attractive thing to most, it is important. The hairs in the nose help to filter out allergens and catch foreign debris.

An Improperly maintained Cabin Air Filter on a car makes a great bed for mice

Other items you interact with daily have similar air intake filtration. A car often has both an intake air filter and even an in-cabin air filter, these both protect various parts. The engine air filter is vital to prevent dust, debris and even excessive water from entering into the precision machined and assembled motor. The HVAC system in every business or home generally has an intake air filter in order to protect the coils and heater box.

There’s another system in most manufacturing facilities that should always have a filter on it, and that is the compressed air system. Properly maintaining and filtering the incoming ambient air feed before it is compressed starts the process of on the right foot to optimize performance and insure efficiency is maintained from the start of the entire process. These filters are like many others and can be part of a preventative maintenance program. The air compressor manufacturer will have a recommendation on frequency for the various types.

Old Piston driven air compressor intake air filter.

If these filters are left unchanged then the compressor begins to have restricted flow on the intake which then results in less air being pulled in or maybe the filter is removed and then the debris all gets pulled in and sent through to become foreign debris inside the compressor. Both of these will cause the compressor to wear or overheat and work harder to compress the air and send it into the storage tank. This results in premature maintenance needed on the compressors and or point of use devices.

Thus, always filter your incoming air. Whether for your air compressor, car engine, or house, start with a fresh intake and then keep it optimized from there. The payback will be longer lasting equipment that operates at a higher efficiency. And remember, breathe in through your nose.

If you would like to discuss your filtration setups, feel free to reach out to an Application Engineer.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

Oil Removal Filters: Never First, Sometimes Last

If you have been around compressed air systems, our blogs, or even optimized installations of point of use compressed air products, you will see point of use filtration in place. These filters come in a plethora of sizes, shapes, and specifications. Here at EXAIR we recommend to always keep a point of use filtration solution in place. This would include an auto-drain filter separator, as well as an oil removal filter.

Oil Removal Filters

So why do we have two instead of one? Could you use just the oil removal filter rather than two? Well, the answer lies in an optimized installation that will also carry with it a lower total cost of ownership. The auto-drain filter separators from EXAIR have a filter element which takes the air to a 5 micron level of filtration. (Except for the model 9004 which filters down to 20 micron.) The Oil Removal Filters have a coalescing filter element which filters to a 0.3 micron level for the finest debris/mists that may be contained within the compressed air stream. One reason for the separation is when a system is oil-free, the finer filtration level may not be needed. Also, by catching the bulk of material with the standard auto-drain filter and then leaving the finer filter to catch the residual amounts liquid that had been finely atomized within the stream of compressed air. This finer filter costs more so using it to catch larger particulate and risking it becoming clogged quicker will increase the total cost of ownership of the point of use compressed air product it is hooked to, hence never first and sometimes last. After the point of use filtration then placing the point of use pressure regulator and solenoid valves are next. This is all a better way to reduce risk of these being damaged from dirt and contaminants in the air lines. Total cost of ownership reductions all point to a better sustainability of any product.

To better showcase the importance of filtration, here’s a brief video I did a while back that visualizes just what one can see out of a compressed air line with minimal moisture introduced.

As you can see, keeping the point of use air filtered protects your process and decreases the total cost of ownership for your compressed air point of use product. If you would like to discuss other ways we can improve efficiency within your facility and help ensure you are getting the longest life out of your products, please contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF

O-Rings, Seals, Gaskets, Maintenace, Filtration – They All Matter

I’ve mentioned it before and I’ll say it again. You can’t teach experience. This was told to me by a mentor at a previous job and of course, younger me thought, “Yeah, yeah I know all I need to know.”  Well, younger me was an idiot and learned many things through experience. Sometimes I am still a slow learner and eventually, I remember those experiences and make decisions based on them. So what does this have to do with o-rings, seals, and gaskets?

I’m in the midst of a light construction project in my house and have reached a stage where some tools that I do not have would come in handy and make the job faster. Younger me would have justified purchasing a new one, experienced me understands a budget and reached out to my network of friends and a good friend said they had the tool I needed. This was a compressed air powered framing nail gun. Straight through nailing, no-problem, toe-nailing, no-problem, this thing won’t break a sweat and your arms will be stronger by the time you are done using it while your thumbs are screaming thank you for not smashing me a hundred times.

The Framing Nail Gun in question

This loan did come with two conditions, one was, he didn’t have any nails to give with it. This was not a problem as I wouldn’t expect a friend to give me free fasteners with a tool loan. The second is the one that concerned me, he said, it does leak a little air but it should still shoot just fine. After working in the compressed air industry for over a decade I have experienced this many times. At that point I knew if you could hear it, chances were it was a bad leak. Upon further inspection, there was a cylinder gasket and rubber spring that were in pieces.

Old Spring Bumper and Main Cylinder Gasket

Gasket pieces and dirty air can result in catastrophic failures.

Nothing that a trip to a local business couldn’t take care of.  A few new parts and discussion with their knowledgeable staff and I had the information needed to rebuild this nail gun to functioning status.

New vs. Old

Oddly enough, my experience and expertise with how the EXAIR products like the No-Drip Air Atomizing Liquid Spray Nozzles operate and how to rebuild them, provided a good foundation about how this tool worked. This repair ended up being very similar to the rebuild on a No-Drip Spray Nozzle.

This story is two-fold, filtration could have prevented a lot of the damage to this gun. This gun uses a good amount of air volume at an expedient pace so keeping it clean and clear of debris helps extend the lifetime of internal parts.  See my video on what happens without filtration below.

The second part is that maintaining and understanding processes to clean/rebuild are crucial to sustainable function of a machine. The cleaning process for this gun was fairly straightforward and using the correct lubricant for reassembly was another critical role. This culminated in a framing nail gun that can now be used to further my project and will more than likely live another decade before needing a rebuild again. That is if filtration and proper lubrication are followed.

Had I not obtained experiences throughout my career that helped me to understand how this tool functioned, the worth of a reliable network of vendors, and the necessity to complete tasks that take me out of my comfort zone I wouldn’t be in the place I am today. Because I have the experience and the network to ask for help it enables me to keep machines running that could have cost valuable production hours had this been a production environment.

EXAIR stocks rebuild kits, gaskets, shims, and parts for all of our product lines which may require a repair. For products which need to be cleaned in order to return back to new performance, we have the instructions or can do it for you here. From time to time they may need a repair or refurb in order to keep functioning at peak performance. If you want to build your trusted network or learn more about how to rebuild or clean EXAIR products, contact us.

Brian Farno
Application Engineer
BrianFarno@EXAIR.com
@EXAIR_BF