What Are Compressed Air Dryers and Why are They Necessary?

desiccant-dryer

When we talk with customers about their EXAIR Products, we also discuss the quality of their compressed air. Many of our products have no moving parts and are considered maintenance-free when supplied with clean, dry compressed air. One of the most critical aspects of a compressed air distribution system is the dryer.

No matter where you are in the world, the atmospheric air will contain water vapor. Even in the driest place in the world, McMurdo Dry Valley in Antartica, there is some moisture in the air. As this air cools to the saturation point, also known as dew point, the vapor will condense into liquid water. The amount of this moisture will vary depending on both the ambient temperature and the relative humidity. According to the Compressed Air Challenge, a general rule of thumb is that the amount of moisture air can hold at a saturated condition will double for every increase of 20°F. In regions or periods of warmer temperatures, this poses an even greater problem. Some problems that can be associated with moisture-laden compressed air include:

  • Increased wear of moving parts due to removal of lubrication
  • Formation of rust in piping and equipment
  • Can affect the color, adherence, and finish of paint that is applied using compressed air
  • Jeopardizes processes that are dependent upon pneumatic controls. A malfunction due to rust, scale, or clogged orifices can damage product or cause costly shutdowns
  • In colder temperatures, the moisture can freeze in the control lines

In order to remove moisture from the air after compression, a dryer must be installed at the outlet of the compressor. There are three primary types of dryers used in the compressor industry: refrigerant, desiccant, and membrane. Each style has it’s own inherent applications and benefits.

Refrigerant type dryers cool the air, removing the condensed moisture before allowing it to continue through the distribution system. These will generally lower the dew point of the air to 35-40°F which is sufficient for most applications. So long as the temperature in the facility never dips below the dew point, condensation will not occur. Typical advantages of a refrigerant dryer include: low initial capital cost, relatively low operating cost, and low maintenance costs. This makes them a common solution used in an industrial compressed air system.

Another type of dryer is the desiccant dryer. I’m sure you’ve seen the small “Do Not Eat” packages that are included in a variety of food products, shoes, medications, etc. These are filled with a small amount of desiccant (typically silica gel) that is there to absorb any moisture that could contaminate the product. In a desiccant dryer, the same principle applies. The compressed air is forced through a “tower” that is filled with desiccant. The moisture is removed from the air supply and then passed into the distribution system. One minor drawback with a desiccant type dryer is that the desiccant material does have to periodically be replaced. Desiccant dryers can also be used in addition to a refrigerant dryer for critical applications that require all water vapor to be removed.

The third type of dryer is the membrane dryer. In this style, extremely low dew points are able to be achieved. This makes them the optimal choice for outdoor applications where the air could be susceptible to frost in colder climates. They are also ideal for medical and dental applications where consistent reliability and air quality is an absolute must. A membrane dryer does not require a source of electricity to operate and its compact size allows it to be easily installed with minimal downtime and floor space. Maintenance is minimal and consists of periodic replacement of the membrane. While they are good for some applications, they do come with limitations. They do limit the capacity of the system with variations ranging from as little as 1 SCFM to 200 SCFM. Because of this, they’re often used as a point-of-use dryer for specific applications rather than an entire compressed air system. Some of the compressed air must be purged with along with the moisture which consumes excess compressed air.

Regardless of what products you’re using at the point-of-use, a dryer is undoubtedly a critical component of that system. Delivering clean, dry air to your EXAIR Products or other pneumatic devices will help to ensure a long life out of your equipment.

Tyler Daniel
Application Engineer
E-mail: TylerDaniel@EXAIR.com
Twitter: @EXAIR_TD

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s